Evaluate
2\sqrt{6}+\frac{89}{9}\approx 14.787868374
Factor
\frac{18 \sqrt{6} + 89}{9} = 14.787868374455245
Share
Copied to clipboard
2\sqrt{2}\sqrt{3}-2\lceil -5\rceil -\left(\frac{1}{3}\right)^{2}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
2\sqrt{6}-2\lceil -5\rceil -\left(\frac{1}{3}\right)^{2}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{6}-2\left(-5\right)-\left(\frac{1}{3}\right)^{2}
The ceiling of a real number a is the smallest integer number greater than or equal to a. The ceiling of -5 is -5.
2\sqrt{6}-\left(-10\right)-\left(\frac{1}{3}\right)^{2}
Multiply 2 and -5 to get -10.
2\sqrt{6}+10-\left(\frac{1}{3}\right)^{2}
The opposite of -10 is 10.
2\sqrt{6}+10-\frac{1}{9}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
2\sqrt{6}+\frac{90}{9}-\frac{1}{9}
Convert 10 to fraction \frac{90}{9}.
2\sqrt{6}+\frac{90-1}{9}
Since \frac{90}{9} and \frac{1}{9} have the same denominator, subtract them by subtracting their numerators.
2\sqrt{6}+\frac{89}{9}
Subtract 1 from 90 to get 89.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}