Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{7x-1}=5+\sqrt{3x-18}
Subtract -\sqrt{3x-18} from both sides of the equation.
\left(\sqrt{7x-1}\right)^{2}=\left(5+\sqrt{3x-18}\right)^{2}
Square both sides of the equation.
7x-1=\left(5+\sqrt{3x-18}\right)^{2}
Calculate \sqrt{7x-1} to the power of 2 and get 7x-1.
7x-1=25+10\sqrt{3x-18}+\left(\sqrt{3x-18}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+\sqrt{3x-18}\right)^{2}.
7x-1=25+10\sqrt{3x-18}+3x-18
Calculate \sqrt{3x-18} to the power of 2 and get 3x-18.
7x-1=7+10\sqrt{3x-18}+3x
Subtract 18 from 25 to get 7.
7x-1-\left(7+3x\right)=10\sqrt{3x-18}
Subtract 7+3x from both sides of the equation.
7x-1-7-3x=10\sqrt{3x-18}
To find the opposite of 7+3x, find the opposite of each term.
7x-8-3x=10\sqrt{3x-18}
Subtract 7 from -1 to get -8.
4x-8=10\sqrt{3x-18}
Combine 7x and -3x to get 4x.
\left(4x-8\right)^{2}=\left(10\sqrt{3x-18}\right)^{2}
Square both sides of the equation.
16x^{2}-64x+64=\left(10\sqrt{3x-18}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-8\right)^{2}.
16x^{2}-64x+64=10^{2}\left(\sqrt{3x-18}\right)^{2}
Expand \left(10\sqrt{3x-18}\right)^{2}.
16x^{2}-64x+64=100\left(\sqrt{3x-18}\right)^{2}
Calculate 10 to the power of 2 and get 100.
16x^{2}-64x+64=100\left(3x-18\right)
Calculate \sqrt{3x-18} to the power of 2 and get 3x-18.
16x^{2}-64x+64=300x-1800
Use the distributive property to multiply 100 by 3x-18.
16x^{2}-64x+64-300x=-1800
Subtract 300x from both sides.
16x^{2}-364x+64=-1800
Combine -64x and -300x to get -364x.
16x^{2}-364x+64+1800=0
Add 1800 to both sides.
16x^{2}-364x+1864=0
Add 64 and 1800 to get 1864.
x=\frac{-\left(-364\right)±\sqrt{\left(-364\right)^{2}-4\times 16\times 1864}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -364 for b, and 1864 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-364\right)±\sqrt{132496-4\times 16\times 1864}}{2\times 16}
Square -364.
x=\frac{-\left(-364\right)±\sqrt{132496-64\times 1864}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-364\right)±\sqrt{132496-119296}}{2\times 16}
Multiply -64 times 1864.
x=\frac{-\left(-364\right)±\sqrt{13200}}{2\times 16}
Add 132496 to -119296.
x=\frac{-\left(-364\right)±20\sqrt{33}}{2\times 16}
Take the square root of 13200.
x=\frac{364±20\sqrt{33}}{2\times 16}
The opposite of -364 is 364.
x=\frac{364±20\sqrt{33}}{32}
Multiply 2 times 16.
x=\frac{20\sqrt{33}+364}{32}
Now solve the equation x=\frac{364±20\sqrt{33}}{32} when ± is plus. Add 364 to 20\sqrt{33}.
x=\frac{5\sqrt{33}+91}{8}
Divide 364+20\sqrt{33} by 32.
x=\frac{364-20\sqrt{33}}{32}
Now solve the equation x=\frac{364±20\sqrt{33}}{32} when ± is minus. Subtract 20\sqrt{33} from 364.
x=\frac{91-5\sqrt{33}}{8}
Divide 364-20\sqrt{33} by 32.
x=\frac{5\sqrt{33}+91}{8} x=\frac{91-5\sqrt{33}}{8}
The equation is now solved.
\sqrt{7\times \frac{5\sqrt{33}+91}{8}-1}-\sqrt{3\times \frac{5\sqrt{33}+91}{8}-18}=5
Substitute \frac{5\sqrt{33}+91}{8} for x in the equation \sqrt{7x-1}-\sqrt{3x-18}=5.
5=5
Simplify. The value x=\frac{5\sqrt{33}+91}{8} satisfies the equation.
\sqrt{7\times \frac{91-5\sqrt{33}}{8}-1}-\sqrt{3\times \frac{91-5\sqrt{33}}{8}-18}=5
Substitute \frac{91-5\sqrt{33}}{8} for x in the equation \sqrt{7x-1}-\sqrt{3x-18}=5.
5=5
Simplify. The value x=\frac{91-5\sqrt{33}}{8} satisfies the equation.
x=\frac{5\sqrt{33}+91}{8} x=\frac{91-5\sqrt{33}}{8}
List all solutions of \sqrt{7x-1}=\sqrt{3x-18}+5.