Evaluate (complex solution)
\frac{5\sqrt{1501}i}{79}\approx 2.452072231i
Real Part (complex solution)
0
Evaluate
\text{Indeterminate}
Share
Copied to clipboard
\sqrt{\frac{78}{79}-\frac{553}{79}}
Convert 7 to fraction \frac{553}{79}.
\sqrt{\frac{78-553}{79}}
Since \frac{78}{79} and \frac{553}{79} have the same denominator, subtract them by subtracting their numerators.
\sqrt{-\frac{475}{79}}
Subtract 553 from 78 to get -475.
\frac{\sqrt{-475}}{\sqrt{79}}
Rewrite the square root of the division \sqrt{-\frac{475}{79}} as the division of square roots \frac{\sqrt{-475}}{\sqrt{79}}.
\frac{5i\sqrt{19}}{\sqrt{79}}
Factor -475=\left(5i\right)^{2}\times 19. Rewrite the square root of the product \sqrt{\left(5i\right)^{2}\times 19} as the product of square roots \sqrt{\left(5i\right)^{2}}\sqrt{19}. Take the square root of \left(5i\right)^{2}.
\frac{5i\sqrt{19}\sqrt{79}}{\left(\sqrt{79}\right)^{2}}
Rationalize the denominator of \frac{5i\sqrt{19}}{\sqrt{79}} by multiplying numerator and denominator by \sqrt{79}.
\frac{5i\sqrt{19}\sqrt{79}}{79}
The square of \sqrt{79} is 79.
\frac{5i\sqrt{1501}}{79}
To multiply \sqrt{19} and \sqrt{79}, multiply the numbers under the square root.
\frac{5}{79}i\sqrt{1501}
Divide 5i\sqrt{1501} by 79 to get \frac{5}{79}i\sqrt{1501}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}