Evaluate
\frac{105\sqrt{3}-55}{2}\approx 63.432667397
Factor
\frac{5 {(21 \sqrt{3} - 11)}}{2} = 63.43266739736606
Share
Copied to clipboard
50\sqrt{3}-\frac{55-1\times 5\sqrt{3}}{2}
Factor 7500=50^{2}\times 3. Rewrite the square root of the product \sqrt{50^{2}\times 3} as the product of square roots \sqrt{50^{2}}\sqrt{3}. Take the square root of 50^{2}.
50\sqrt{3}-\frac{55-5\sqrt{3}}{2}
Multiply 1 and 5 to get 5.
\frac{2\times 50\sqrt{3}}{2}-\frac{55-5\sqrt{3}}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 50\sqrt{3} times \frac{2}{2}.
\frac{2\times 50\sqrt{3}-\left(55-5\sqrt{3}\right)}{2}
Since \frac{2\times 50\sqrt{3}}{2} and \frac{55-5\sqrt{3}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{100\sqrt{3}-55+5\sqrt{3}}{2}
Do the multiplications in 2\times 50\sqrt{3}-\left(55-5\sqrt{3}\right).
\frac{105\sqrt{3}-55}{2}
Do the calculations in 100\sqrt{3}-55+5\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}