Solve for x
x=6
x=2
Graph
Share
Copied to clipboard
\sqrt{6-x}=5-\sqrt{4x+1}
Subtract \sqrt{4x+1} from both sides of the equation.
\left(\sqrt{6-x}\right)^{2}=\left(5-\sqrt{4x+1}\right)^{2}
Square both sides of the equation.
6-x=\left(5-\sqrt{4x+1}\right)^{2}
Calculate \sqrt{6-x} to the power of 2 and get 6-x.
6-x=25-10\sqrt{4x+1}+\left(\sqrt{4x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5-\sqrt{4x+1}\right)^{2}.
6-x=25-10\sqrt{4x+1}+4x+1
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
6-x=26-10\sqrt{4x+1}+4x
Add 25 and 1 to get 26.
6-x-\left(26+4x\right)=-10\sqrt{4x+1}
Subtract 26+4x from both sides of the equation.
6-x-26-4x=-10\sqrt{4x+1}
To find the opposite of 26+4x, find the opposite of each term.
-20-x-4x=-10\sqrt{4x+1}
Subtract 26 from 6 to get -20.
-20-5x=-10\sqrt{4x+1}
Combine -x and -4x to get -5x.
\left(-20-5x\right)^{2}=\left(-10\sqrt{4x+1}\right)^{2}
Square both sides of the equation.
400+200x+25x^{2}=\left(-10\sqrt{4x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-20-5x\right)^{2}.
400+200x+25x^{2}=\left(-10\right)^{2}\left(\sqrt{4x+1}\right)^{2}
Expand \left(-10\sqrt{4x+1}\right)^{2}.
400+200x+25x^{2}=100\left(\sqrt{4x+1}\right)^{2}
Calculate -10 to the power of 2 and get 100.
400+200x+25x^{2}=100\left(4x+1\right)
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
400+200x+25x^{2}=400x+100
Use the distributive property to multiply 100 by 4x+1.
400+200x+25x^{2}-400x=100
Subtract 400x from both sides.
400-200x+25x^{2}=100
Combine 200x and -400x to get -200x.
400-200x+25x^{2}-100=0
Subtract 100 from both sides.
300-200x+25x^{2}=0
Subtract 100 from 400 to get 300.
25x^{2}-200x+300=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-200\right)±\sqrt{\left(-200\right)^{2}-4\times 25\times 300}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, -200 for b, and 300 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-200\right)±\sqrt{40000-4\times 25\times 300}}{2\times 25}
Square -200.
x=\frac{-\left(-200\right)±\sqrt{40000-100\times 300}}{2\times 25}
Multiply -4 times 25.
x=\frac{-\left(-200\right)±\sqrt{40000-30000}}{2\times 25}
Multiply -100 times 300.
x=\frac{-\left(-200\right)±\sqrt{10000}}{2\times 25}
Add 40000 to -30000.
x=\frac{-\left(-200\right)±100}{2\times 25}
Take the square root of 10000.
x=\frac{200±100}{2\times 25}
The opposite of -200 is 200.
x=\frac{200±100}{50}
Multiply 2 times 25.
x=\frac{300}{50}
Now solve the equation x=\frac{200±100}{50} when ± is plus. Add 200 to 100.
x=6
Divide 300 by 50.
x=\frac{100}{50}
Now solve the equation x=\frac{200±100}{50} when ± is minus. Subtract 100 from 200.
x=2
Divide 100 by 50.
x=6 x=2
The equation is now solved.
\sqrt{6-6}+\sqrt{4\times 6+1}=5
Substitute 6 for x in the equation \sqrt{6-x}+\sqrt{4x+1}=5.
5=5
Simplify. The value x=6 satisfies the equation.
\sqrt{6-2}+\sqrt{4\times 2+1}=5
Substitute 2 for x in the equation \sqrt{6-x}+\sqrt{4x+1}=5.
5=5
Simplify. The value x=2 satisfies the equation.
x=6 x=2
List all solutions of \sqrt{6-x}=-\sqrt{4x+1}+5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}