Solve for x
x=5
Graph
Share
Copied to clipboard
\left(\sqrt{6+\sqrt{x+4}}\right)^{2}=\left(\sqrt{2x-1}\right)^{2}
Square both sides of the equation.
6+\sqrt{x+4}=\left(\sqrt{2x-1}\right)^{2}
Calculate \sqrt{6+\sqrt{x+4}} to the power of 2 and get 6+\sqrt{x+4}.
6+\sqrt{x+4}=2x-1
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
\sqrt{x+4}=2x-1-6
Subtract 6 from both sides of the equation.
\sqrt{x+4}=2x-7
Subtract 6 from -1 to get -7.
\left(\sqrt{x+4}\right)^{2}=\left(2x-7\right)^{2}
Square both sides of the equation.
x+4=\left(2x-7\right)^{2}
Calculate \sqrt{x+4} to the power of 2 and get x+4.
x+4=4x^{2}-28x+49
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2x-7\right)^{2}.
x+4-4x^{2}=-28x+49
Subtract 4x^{2} from both sides.
x+4-4x^{2}+28x=49
Add 28x to both sides.
29x+4-4x^{2}=49
Combine x and 28x to get 29x.
29x+4-4x^{2}-49=0
Subtract 49 from both sides.
29x-45-4x^{2}=0
Subtract 49 from 4 to get -45.
-4x^{2}+29x-45=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=29 ab=-4\left(-45\right)=180
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-45. To find a and b, set up a system to be solved.
1,180 2,90 3,60 4,45 5,36 6,30 9,20 10,18 12,15
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 180.
1+180=181 2+90=92 3+60=63 4+45=49 5+36=41 6+30=36 9+20=29 10+18=28 12+15=27
Calculate the sum for each pair.
a=20 b=9
The solution is the pair that gives sum 29.
\left(-4x^{2}+20x\right)+\left(9x-45\right)
Rewrite -4x^{2}+29x-45 as \left(-4x^{2}+20x\right)+\left(9x-45\right).
4x\left(-x+5\right)-9\left(-x+5\right)
Factor out 4x in the first and -9 in the second group.
\left(-x+5\right)\left(4x-9\right)
Factor out common term -x+5 by using distributive property.
x=5 x=\frac{9}{4}
To find equation solutions, solve -x+5=0 and 4x-9=0.
\sqrt{6+\sqrt{5+4}}=\sqrt{2\times 5-1}
Substitute 5 for x in the equation \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
3=3
Simplify. The value x=5 satisfies the equation.
\sqrt{6+\sqrt{\frac{9}{4}+4}}=\sqrt{2\times \frac{9}{4}-1}
Substitute \frac{9}{4} for x in the equation \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
\frac{1}{2}\times 34^{\frac{1}{2}}=\frac{1}{2}\times 14^{\frac{1}{2}}
Simplify. The value x=\frac{9}{4} does not satisfy the equation.
\sqrt{6+\sqrt{5+4}}=\sqrt{2\times 5-1}
Substitute 5 for x in the equation \sqrt{6+\sqrt{x+4}}=\sqrt{2x-1}.
3=3
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{\sqrt{x+4}+6}=\sqrt{2x-1} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}