Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{6}+3\sqrt{3}x+2x=3\times 3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{6}+3\sqrt{3}x+2x=9\sqrt{2}
Multiply 3 and 3 to get 9.
3\sqrt{3}x+2x=9\sqrt{2}-\sqrt{6}
Subtract \sqrt{6} from both sides.
\left(3\sqrt{3}+2\right)x=9\sqrt{2}-\sqrt{6}
Combine all terms containing x.
\frac{\left(3\sqrt{3}+2\right)x}{3\sqrt{3}+2}=\frac{9\sqrt{2}-\sqrt{6}}{3\sqrt{3}+2}
Divide both sides by 3\sqrt{3}+2.
x=\frac{9\sqrt{2}-\sqrt{6}}{3\sqrt{3}+2}
Dividing by 3\sqrt{3}+2 undoes the multiplication by 3\sqrt{3}+2.
x=\frac{29\sqrt{6}-27\sqrt{2}}{23}
Divide 9\sqrt{2}-\sqrt{6} by 3\sqrt{3}+2.
\sqrt{6}+3\sqrt{3}x+2x=3\times 3\sqrt{2}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{6}+3\sqrt{3}x+2x=9\sqrt{2}
Multiply 3 and 3 to get 9.
3\sqrt{3}x+2x=9\sqrt{2}-\sqrt{6}
Subtract \sqrt{6} from both sides.
\left(3\sqrt{3}+2\right)x=9\sqrt{2}-\sqrt{6}
Combine all terms containing x.
\frac{\left(3\sqrt{3}+2\right)x}{3\sqrt{3}+2}=\frac{9\sqrt{2}-\sqrt{6}}{3\sqrt{3}+2}
Divide both sides by 3\sqrt{3}+2.
x=\frac{9\sqrt{2}-\sqrt{6}}{3\sqrt{3}+2}
Dividing by 3\sqrt{3}+2 undoes the multiplication by 3\sqrt{3}+2.
x=\frac{29\sqrt{6}-27\sqrt{2}}{23}
Divide 9\sqrt{2}-\sqrt{6} by 3\sqrt{3}+2.