Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{6}\sqrt{2}\sqrt{27}+\left(-7\right)^{4}-11^{2}
To divide powers of the same base, subtract the denominator's exponent from the numerator's exponent. Subtract 1 from 5 to get 4.
\sqrt{2}\sqrt{3}\sqrt{2}\sqrt{27}+\left(-7\right)^{4}-11^{2}
Factor 6=2\times 3. Rewrite the square root of the product \sqrt{2\times 3} as the product of square roots \sqrt{2}\sqrt{3}.
2\sqrt{3}\sqrt{27}+\left(-7\right)^{4}-11^{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
2\sqrt{3}\sqrt{3}\sqrt{9}+\left(-7\right)^{4}-11^{2}
Factor 27=3\times 9. Rewrite the square root of the product \sqrt{3\times 9} as the product of square roots \sqrt{3}\sqrt{9}.
2\times 3\sqrt{9}+\left(-7\right)^{4}-11^{2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
6\sqrt{9}+\left(-7\right)^{4}-11^{2}
Multiply 2 and 3 to get 6.
6\times 3+\left(-7\right)^{4}-11^{2}
Calculate the square root of 9 and get 3.
18+\left(-7\right)^{4}-11^{2}
Multiply 6 and 3 to get 18.
18+2401-11^{2}
Calculate -7 to the power of 4 and get 2401.
2419-11^{2}
Add 18 and 2401 to get 2419.
2419-121
Calculate 11 to the power of 2 and get 121.
2298
Subtract 121 from 2419 to get 2298.