Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{5x-4}=7-\sqrt{2x+1}
Subtract \sqrt{2x+1} from both sides of the equation.
\left(\sqrt{5x-4}\right)^{2}=\left(7-\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
5x-4=\left(7-\sqrt{2x+1}\right)^{2}
Calculate \sqrt{5x-4} to the power of 2 and get 5x-4.
5x-4=49-14\sqrt{2x+1}+\left(\sqrt{2x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{2x+1}\right)^{2}.
5x-4=49-14\sqrt{2x+1}+2x+1
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
5x-4=50-14\sqrt{2x+1}+2x
Add 49 and 1 to get 50.
5x-4-\left(50+2x\right)=-14\sqrt{2x+1}
Subtract 50+2x from both sides of the equation.
5x-4-50-2x=-14\sqrt{2x+1}
To find the opposite of 50+2x, find the opposite of each term.
5x-54-2x=-14\sqrt{2x+1}
Subtract 50 from -4 to get -54.
3x-54=-14\sqrt{2x+1}
Combine 5x and -2x to get 3x.
\left(3x-54\right)^{2}=\left(-14\sqrt{2x+1}\right)^{2}
Square both sides of the equation.
9x^{2}-324x+2916=\left(-14\sqrt{2x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-54\right)^{2}.
9x^{2}-324x+2916=\left(-14\right)^{2}\left(\sqrt{2x+1}\right)^{2}
Expand \left(-14\sqrt{2x+1}\right)^{2}.
9x^{2}-324x+2916=196\left(\sqrt{2x+1}\right)^{2}
Calculate -14 to the power of 2 and get 196.
9x^{2}-324x+2916=196\left(2x+1\right)
Calculate \sqrt{2x+1} to the power of 2 and get 2x+1.
9x^{2}-324x+2916=392x+196
Use the distributive property to multiply 196 by 2x+1.
9x^{2}-324x+2916-392x=196
Subtract 392x from both sides.
9x^{2}-716x+2916=196
Combine -324x and -392x to get -716x.
9x^{2}-716x+2916-196=0
Subtract 196 from both sides.
9x^{2}-716x+2720=0
Subtract 196 from 2916 to get 2720.
x=\frac{-\left(-716\right)±\sqrt{\left(-716\right)^{2}-4\times 9\times 2720}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -716 for b, and 2720 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-716\right)±\sqrt{512656-4\times 9\times 2720}}{2\times 9}
Square -716.
x=\frac{-\left(-716\right)±\sqrt{512656-36\times 2720}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-716\right)±\sqrt{512656-97920}}{2\times 9}
Multiply -36 times 2720.
x=\frac{-\left(-716\right)±\sqrt{414736}}{2\times 9}
Add 512656 to -97920.
x=\frac{-\left(-716\right)±644}{2\times 9}
Take the square root of 414736.
x=\frac{716±644}{2\times 9}
The opposite of -716 is 716.
x=\frac{716±644}{18}
Multiply 2 times 9.
x=\frac{1360}{18}
Now solve the equation x=\frac{716±644}{18} when ± is plus. Add 716 to 644.
x=\frac{680}{9}
Reduce the fraction \frac{1360}{18} to lowest terms by extracting and canceling out 2.
x=\frac{72}{18}
Now solve the equation x=\frac{716±644}{18} when ± is minus. Subtract 644 from 716.
x=4
Divide 72 by 18.
x=\frac{680}{9} x=4
The equation is now solved.
\sqrt{5\times \frac{680}{9}-4}+\sqrt{2\times \frac{680}{9}+1}=7
Substitute \frac{680}{9} for x in the equation \sqrt{5x-4}+\sqrt{2x+1}=7.
\frac{95}{3}=7
Simplify. The value x=\frac{680}{9} does not satisfy the equation.
\sqrt{5\times 4-4}+\sqrt{2\times 4+1}=7
Substitute 4 for x in the equation \sqrt{5x-4}+\sqrt{2x+1}=7.
7=7
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{5x-4}=-\sqrt{2x+1}+7 has a unique solution.