Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{5x+2}\right)^{2}=\left(5x+6\right)^{2}
Square both sides of the equation.
5x+2=\left(5x+6\right)^{2}
Calculate \sqrt{5x+2} to the power of 2 and get 5x+2.
5x+2=25x^{2}+60x+36
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+6\right)^{2}.
5x+2-25x^{2}=60x+36
Subtract 25x^{2} from both sides.
5x+2-25x^{2}-60x=36
Subtract 60x from both sides.
-55x+2-25x^{2}=36
Combine 5x and -60x to get -55x.
-55x+2-25x^{2}-36=0
Subtract 36 from both sides.
-55x-34-25x^{2}=0
Subtract 36 from 2 to get -34.
-25x^{2}-55x-34=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-55\right)±\sqrt{\left(-55\right)^{2}-4\left(-25\right)\left(-34\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, -55 for b, and -34 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-55\right)±\sqrt{3025-4\left(-25\right)\left(-34\right)}}{2\left(-25\right)}
Square -55.
x=\frac{-\left(-55\right)±\sqrt{3025+100\left(-34\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-\left(-55\right)±\sqrt{3025-3400}}{2\left(-25\right)}
Multiply 100 times -34.
x=\frac{-\left(-55\right)±\sqrt{-375}}{2\left(-25\right)}
Add 3025 to -3400.
x=\frac{-\left(-55\right)±5\sqrt{15}i}{2\left(-25\right)}
Take the square root of -375.
x=\frac{55±5\sqrt{15}i}{2\left(-25\right)}
The opposite of -55 is 55.
x=\frac{55±5\sqrt{15}i}{-50}
Multiply 2 times -25.
x=\frac{55+5\sqrt{15}i}{-50}
Now solve the equation x=\frac{55±5\sqrt{15}i}{-50} when ± is plus. Add 55 to 5i\sqrt{15}.
x=\frac{-\sqrt{15}i-11}{10}
Divide 55+5i\sqrt{15} by -50.
x=\frac{-5\sqrt{15}i+55}{-50}
Now solve the equation x=\frac{55±5\sqrt{15}i}{-50} when ± is minus. Subtract 5i\sqrt{15} from 55.
x=\frac{-11+\sqrt{15}i}{10}
Divide 55-5i\sqrt{15} by -50.
x=\frac{-\sqrt{15}i-11}{10} x=\frac{-11+\sqrt{15}i}{10}
The equation is now solved.
\sqrt{5\times \frac{-\sqrt{15}i-11}{10}+2}=5\times \frac{-\sqrt{15}i-11}{10}+6
Substitute \frac{-\sqrt{15}i-11}{10} for x in the equation \sqrt{5x+2}=5x+6.
-\left(\frac{1}{2}-\frac{1}{2}i\times 15^{\frac{1}{2}}\right)=-\frac{1}{2}i\times 15^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{15}i-11}{10} does not satisfy the equation.
\sqrt{5\times \frac{-11+\sqrt{15}i}{10}+2}=5\times \frac{-11+\sqrt{15}i}{10}+6
Substitute \frac{-11+\sqrt{15}i}{10} for x in the equation \sqrt{5x+2}=5x+6.
\frac{1}{2}+\frac{1}{2}i\times 15^{\frac{1}{2}}=\frac{1}{2}+\frac{1}{2}i\times 15^{\frac{1}{2}}
Simplify. The value x=\frac{-11+\sqrt{15}i}{10} satisfies the equation.
x=\frac{-11+\sqrt{15}i}{10}
Equation \sqrt{5x+2}=5x+6 has a unique solution.