Evaluate
3\sqrt{3}\approx 5.196152423
Share
Copied to clipboard
14\sqrt{3}-\sqrt{300}+\sqrt{108}-21\sqrt{3^{-1}}
Factor 588=14^{2}\times 3. Rewrite the square root of the product \sqrt{14^{2}\times 3} as the product of square roots \sqrt{14^{2}}\sqrt{3}. Take the square root of 14^{2}.
14\sqrt{3}-10\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Factor 300=10^{2}\times 3. Rewrite the square root of the product \sqrt{10^{2}\times 3} as the product of square roots \sqrt{10^{2}}\sqrt{3}. Take the square root of 10^{2}.
4\sqrt{3}+\sqrt{108}-21\sqrt{3^{-1}}
Combine 14\sqrt{3} and -10\sqrt{3} to get 4\sqrt{3}.
4\sqrt{3}+6\sqrt{3}-21\sqrt{3^{-1}}
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
10\sqrt{3}-21\sqrt{3^{-1}}
Combine 4\sqrt{3} and 6\sqrt{3} to get 10\sqrt{3}.
10\sqrt{3}-21\sqrt{\frac{1}{3}}
Calculate 3 to the power of -1 and get \frac{1}{3}.
10\sqrt{3}-21\times \frac{\sqrt{1}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
10\sqrt{3}-21\times \frac{1}{\sqrt{3}}
Calculate the square root of 1 and get 1.
10\sqrt{3}-21\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
10\sqrt{3}-21\times \frac{\sqrt{3}}{3}
The square of \sqrt{3} is 3.
10\sqrt{3}-7\sqrt{3}
Cancel out 3, the greatest common factor in 21 and 3.
3\sqrt{3}
Combine 10\sqrt{3} and -7\sqrt{3} to get 3\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}