Solve for x
x = \frac{\sqrt{213} - 9}{2} \approx 2.79725976
Graph
Share
Copied to clipboard
\left(\sqrt{58+x}\right)^{2}=\left(x+5\right)^{2}
Square both sides of the equation.
58+x=\left(x+5\right)^{2}
Calculate \sqrt{58+x} to the power of 2 and get 58+x.
58+x=x^{2}+10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
58+x-x^{2}=10x+25
Subtract x^{2} from both sides.
58+x-x^{2}-10x=25
Subtract 10x from both sides.
58-9x-x^{2}=25
Combine x and -10x to get -9x.
58-9x-x^{2}-25=0
Subtract 25 from both sides.
33-9x-x^{2}=0
Subtract 25 from 58 to get 33.
-x^{2}-9x+33=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\times 33}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -9 for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\times 33}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\times 33}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81+132}}{2\left(-1\right)}
Multiply 4 times 33.
x=\frac{-\left(-9\right)±\sqrt{213}}{2\left(-1\right)}
Add 81 to 132.
x=\frac{9±\sqrt{213}}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{213}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{213}+9}{-2}
Now solve the equation x=\frac{9±\sqrt{213}}{-2} when ± is plus. Add 9 to \sqrt{213}.
x=\frac{-\sqrt{213}-9}{2}
Divide 9+\sqrt{213} by -2.
x=\frac{9-\sqrt{213}}{-2}
Now solve the equation x=\frac{9±\sqrt{213}}{-2} when ± is minus. Subtract \sqrt{213} from 9.
x=\frac{\sqrt{213}-9}{2}
Divide 9-\sqrt{213} by -2.
x=\frac{-\sqrt{213}-9}{2} x=\frac{\sqrt{213}-9}{2}
The equation is now solved.
\sqrt{58+\frac{-\sqrt{213}-9}{2}}=\frac{-\sqrt{213}-9}{2}+5
Substitute \frac{-\sqrt{213}-9}{2} for x in the equation \sqrt{58+x}=x+5.
-\left(\frac{1}{2}-\frac{1}{2}\times 213^{\frac{1}{2}}\right)=-\frac{1}{2}\times 213^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{213}-9}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{58+\frac{\sqrt{213}-9}{2}}=\frac{\sqrt{213}-9}{2}+5
Substitute \frac{\sqrt{213}-9}{2} for x in the equation \sqrt{58+x}=x+5.
\frac{1}{2}+\frac{1}{2}\times 213^{\frac{1}{2}}=\frac{1}{2}\times 213^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{213}-9}{2} satisfies the equation.
x=\frac{\sqrt{213}-9}{2}
Equation \sqrt{x+58}=x+5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}