Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\sqrt{58+x}\right)^{2}=\left(x+5\right)^{2}
Square both sides of the equation.
58+x=\left(x+5\right)^{2}
Calculate \sqrt{58+x} to the power of 2 and get 58+x.
58+x=x^{2}+10x+25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+5\right)^{2}.
58+x-x^{2}=10x+25
Subtract x^{2} from both sides.
58+x-x^{2}-10x=25
Subtract 10x from both sides.
58-9x-x^{2}=25
Combine x and -10x to get -9x.
58-9x-x^{2}-25=0
Subtract 25 from both sides.
33-9x-x^{2}=0
Subtract 25 from 58 to get 33.
-x^{2}-9x+33=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-1\right)\times 33}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -9 for b, and 33 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-1\right)\times 33}}{2\left(-1\right)}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+4\times 33}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-9\right)±\sqrt{81+132}}{2\left(-1\right)}
Multiply 4 times 33.
x=\frac{-\left(-9\right)±\sqrt{213}}{2\left(-1\right)}
Add 81 to 132.
x=\frac{9±\sqrt{213}}{2\left(-1\right)}
The opposite of -9 is 9.
x=\frac{9±\sqrt{213}}{-2}
Multiply 2 times -1.
x=\frac{\sqrt{213}+9}{-2}
Now solve the equation x=\frac{9±\sqrt{213}}{-2} when ± is plus. Add 9 to \sqrt{213}.
x=\frac{-\sqrt{213}-9}{2}
Divide 9+\sqrt{213} by -2.
x=\frac{9-\sqrt{213}}{-2}
Now solve the equation x=\frac{9±\sqrt{213}}{-2} when ± is minus. Subtract \sqrt{213} from 9.
x=\frac{\sqrt{213}-9}{2}
Divide 9-\sqrt{213} by -2.
x=\frac{-\sqrt{213}-9}{2} x=\frac{\sqrt{213}-9}{2}
The equation is now solved.
\sqrt{58+\frac{-\sqrt{213}-9}{2}}=\frac{-\sqrt{213}-9}{2}+5
Substitute \frac{-\sqrt{213}-9}{2} for x in the equation \sqrt{58+x}=x+5.
-\left(\frac{1}{2}-\frac{1}{2}\times 213^{\frac{1}{2}}\right)=-\frac{1}{2}\times 213^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{-\sqrt{213}-9}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{58+\frac{\sqrt{213}-9}{2}}=\frac{\sqrt{213}-9}{2}+5
Substitute \frac{\sqrt{213}-9}{2} for x in the equation \sqrt{58+x}=x+5.
\frac{1}{2}+\frac{1}{2}\times 213^{\frac{1}{2}}=\frac{1}{2}\times 213^{\frac{1}{2}}+\frac{1}{2}
Simplify. The value x=\frac{\sqrt{213}-9}{2} satisfies the equation.
x=\frac{\sqrt{213}-9}{2}
Equation \sqrt{x+58}=x+5 has a unique solution.