Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{15}+2x^{2}=0
Multiply 5 and 3 to get 15.
2x^{2}=-\sqrt{15}
Subtract \sqrt{15} from both sides. Anything subtracted from zero gives its negation.
x^{2}=-\frac{\sqrt{15}}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{\sqrt{2}\sqrt[4]{15}i}{2} x=-\frac{\sqrt{2}\sqrt[4]{15}i}{2}
Take the square root of both sides of the equation.
\sqrt{15}+2x^{2}=0
Multiply 5 and 3 to get 15.
2x^{2}+\sqrt{15}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\sqrt{15}}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and \sqrt{15} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\sqrt{15}}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\sqrt{15}}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±2\sqrt{2}i\sqrt[4]{15}}{2\times 2}
Take the square root of -8\sqrt{15}.
x=\frac{0±2\sqrt{2}i\sqrt[4]{15}}{4}
Multiply 2 times 2.
x=\frac{\sqrt{2}\sqrt[4]{15}i}{2}
Now solve the equation x=\frac{0±2\sqrt{2}i\sqrt[4]{15}}{4} when ± is plus.
x=-\frac{\sqrt{2}\sqrt[4]{15}i}{2}
Now solve the equation x=\frac{0±2\sqrt{2}i\sqrt[4]{15}}{4} when ± is minus.
x=\frac{\sqrt{2}\sqrt[4]{15}i}{2} x=-\frac{\sqrt{2}\sqrt[4]{15}i}{2}
The equation is now solved.