Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}-\sqrt{15}+\left(\sqrt{15}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Consider \left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\sqrt{5}-\sqrt{15}+15-\left(2\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
\sqrt{5}-\sqrt{15}+15-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
\sqrt{5}-\sqrt{15}+15-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
\sqrt{5}-\sqrt{15}+15-4\times 3
The square of \sqrt{3} is 3.
\sqrt{5}-\sqrt{15}+15-12
Multiply 4 and 3 to get 12.
\sqrt{5}-\sqrt{15}+3
Subtract 12 from 15 to get 3.