Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{5}\right)^{2}-\sqrt{5}\sqrt{15}+\left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right)
Use the distributive property to multiply \sqrt{5} by \sqrt{5}-\sqrt{15}.
5-\sqrt{5}\sqrt{15}+\left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right)
The square of \sqrt{5} is 5.
5-\sqrt{5}\sqrt{5}\sqrt{3}+\left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right)
Factor 15=5\times 3. Rewrite the square root of the product \sqrt{5\times 3} as the product of square roots \sqrt{5}\sqrt{3}.
5-5\sqrt{3}+\left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
5-5\sqrt{3}+\left(\sqrt{15}\right)^{2}-\left(2\sqrt{3}\right)^{2}
Consider \left(\sqrt{15}+2\sqrt{3}\right)\left(\sqrt{15}-2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
5-5\sqrt{3}+15-\left(2\sqrt{3}\right)^{2}
The square of \sqrt{15} is 15.
5-5\sqrt{3}+15-2^{2}\left(\sqrt{3}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
5-5\sqrt{3}+15-4\left(\sqrt{3}\right)^{2}
Calculate 2 to the power of 2 and get 4.
5-5\sqrt{3}+15-4\times 3
The square of \sqrt{3} is 3.
5-5\sqrt{3}+15-12
Multiply 4 and 3 to get 12.
5-5\sqrt{3}+3
Subtract 12 from 15 to get 3.
8-5\sqrt{3}
Add 5 and 3 to get 8.