Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{5}+2-\frac{\left(\sqrt{5}+1\right)^{2}}{\sqrt{5}+1-1}
Add 1 and 1 to get 2.
\sqrt{5}+2-\frac{\left(\sqrt{5}\right)^{2}+2\sqrt{5}+1}{\sqrt{5}+1-1}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+1\right)^{2}.
\sqrt{5}+2-\frac{5+2\sqrt{5}+1}{\sqrt{5}+1-1}
The square of \sqrt{5} is 5.
\sqrt{5}+2-\frac{6+2\sqrt{5}}{\sqrt{5}+1-1}
Add 5 and 1 to get 6.
\sqrt{5}+2-\frac{6+2\sqrt{5}}{\sqrt{5}}
Subtract 1 from 1 to get 0.
\sqrt{5}+2-\frac{\left(6+2\sqrt{5}\right)\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{6+2\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\sqrt{5}+2-\frac{\left(6+2\sqrt{5}\right)\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{5\left(\sqrt{5}+2\right)}{5}-\frac{\left(6+2\sqrt{5}\right)\sqrt{5}}{5}
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{5}+2 times \frac{5}{5}.
\frac{5\left(\sqrt{5}+2\right)-\left(6+2\sqrt{5}\right)\sqrt{5}}{5}
Since \frac{5\left(\sqrt{5}+2\right)}{5} and \frac{\left(6+2\sqrt{5}\right)\sqrt{5}}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{5\sqrt{5}+10-6\sqrt{5}-10}{5}
Do the multiplications in 5\left(\sqrt{5}+2\right)-\left(6+2\sqrt{5}\right)\sqrt{5}.
\frac{-\sqrt{5}}{5}
Do the calculations in 5\sqrt{5}+10-6\sqrt{5}-10.