Solve for x
x = \frac{7}{4} = 1\frac{3}{4} = 1.75
Graph
Share
Copied to clipboard
\left(\sqrt{4x-3}\right)^{2}=\left(4x-5\right)^{2}
Square both sides of the equation.
4x-3=\left(4x-5\right)^{2}
Calculate \sqrt{4x-3} to the power of 2 and get 4x-3.
4x-3=16x^{2}-40x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4x-5\right)^{2}.
4x-3-16x^{2}=-40x+25
Subtract 16x^{2} from both sides.
4x-3-16x^{2}+40x=25
Add 40x to both sides.
44x-3-16x^{2}=25
Combine 4x and 40x to get 44x.
44x-3-16x^{2}-25=0
Subtract 25 from both sides.
44x-28-16x^{2}=0
Subtract 25 from -3 to get -28.
11x-7-4x^{2}=0
Divide both sides by 4.
-4x^{2}+11x-7=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=11 ab=-4\left(-7\right)=28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -4x^{2}+ax+bx-7. To find a and b, set up a system to be solved.
1,28 2,14 4,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 28.
1+28=29 2+14=16 4+7=11
Calculate the sum for each pair.
a=7 b=4
The solution is the pair that gives sum 11.
\left(-4x^{2}+7x\right)+\left(4x-7\right)
Rewrite -4x^{2}+11x-7 as \left(-4x^{2}+7x\right)+\left(4x-7\right).
-x\left(4x-7\right)+4x-7
Factor out -x in -4x^{2}+7x.
\left(4x-7\right)\left(-x+1\right)
Factor out common term 4x-7 by using distributive property.
x=\frac{7}{4} x=1
To find equation solutions, solve 4x-7=0 and -x+1=0.
\sqrt{4\times \frac{7}{4}-3}=4\times \frac{7}{4}-5
Substitute \frac{7}{4} for x in the equation \sqrt{4x-3}=4x-5.
2=2
Simplify. The value x=\frac{7}{4} satisfies the equation.
\sqrt{4\times 1-3}=4\times 1-5
Substitute 1 for x in the equation \sqrt{4x-3}=4x-5.
1=-1
Simplify. The value x=1 does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{7}{4}
Equation \sqrt{4x-3}=4x-5 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}