Solve for x
x=2
Graph
Share
Copied to clipboard
\sqrt{4x+1}=-1+\sqrt{9x-2}
Subtract -\sqrt{9x-2} from both sides of the equation.
\left(\sqrt{4x+1}\right)^{2}=\left(-1+\sqrt{9x-2}\right)^{2}
Square both sides of the equation.
4x+1=\left(-1+\sqrt{9x-2}\right)^{2}
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
4x+1=1-2\sqrt{9x-2}+\left(\sqrt{9x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-1+\sqrt{9x-2}\right)^{2}.
4x+1=1-2\sqrt{9x-2}+9x-2
Calculate \sqrt{9x-2} to the power of 2 and get 9x-2.
4x+1=-1-2\sqrt{9x-2}+9x
Subtract 2 from 1 to get -1.
4x+1-\left(-1+9x\right)=-2\sqrt{9x-2}
Subtract -1+9x from both sides of the equation.
4x+1+1-9x=-2\sqrt{9x-2}
To find the opposite of -1+9x, find the opposite of each term.
4x+2-9x=-2\sqrt{9x-2}
Add 1 and 1 to get 2.
-5x+2=-2\sqrt{9x-2}
Combine 4x and -9x to get -5x.
\left(-5x+2\right)^{2}=\left(-2\sqrt{9x-2}\right)^{2}
Square both sides of the equation.
25x^{2}-20x+4=\left(-2\sqrt{9x-2}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-5x+2\right)^{2}.
25x^{2}-20x+4=\left(-2\right)^{2}\left(\sqrt{9x-2}\right)^{2}
Expand \left(-2\sqrt{9x-2}\right)^{2}.
25x^{2}-20x+4=4\left(\sqrt{9x-2}\right)^{2}
Calculate -2 to the power of 2 and get 4.
25x^{2}-20x+4=4\left(9x-2\right)
Calculate \sqrt{9x-2} to the power of 2 and get 9x-2.
25x^{2}-20x+4=36x-8
Use the distributive property to multiply 4 by 9x-2.
25x^{2}-20x+4-36x=-8
Subtract 36x from both sides.
25x^{2}-56x+4=-8
Combine -20x and -36x to get -56x.
25x^{2}-56x+4+8=0
Add 8 to both sides.
25x^{2}-56x+12=0
Add 4 and 8 to get 12.
a+b=-56 ab=25\times 12=300
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 25x^{2}+ax+bx+12. To find a and b, set up a system to be solved.
-1,-300 -2,-150 -3,-100 -4,-75 -5,-60 -6,-50 -10,-30 -12,-25 -15,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 300.
-1-300=-301 -2-150=-152 -3-100=-103 -4-75=-79 -5-60=-65 -6-50=-56 -10-30=-40 -12-25=-37 -15-20=-35
Calculate the sum for each pair.
a=-50 b=-6
The solution is the pair that gives sum -56.
\left(25x^{2}-50x\right)+\left(-6x+12\right)
Rewrite 25x^{2}-56x+12 as \left(25x^{2}-50x\right)+\left(-6x+12\right).
25x\left(x-2\right)-6\left(x-2\right)
Factor out 25x in the first and -6 in the second group.
\left(x-2\right)\left(25x-6\right)
Factor out common term x-2 by using distributive property.
x=2 x=\frac{6}{25}
To find equation solutions, solve x-2=0 and 25x-6=0.
\sqrt{4\times 2+1}-\sqrt{9\times 2-2}=-1
Substitute 2 for x in the equation \sqrt{4x+1}-\sqrt{9x-2}=-1.
-1=-1
Simplify. The value x=2 satisfies the equation.
\sqrt{4\times \frac{6}{25}+1}-\sqrt{9\times \frac{6}{25}-2}=-1
Substitute \frac{6}{25} for x in the equation \sqrt{4x+1}-\sqrt{9x-2}=-1.
1=-1
Simplify. The value x=\frac{6}{25} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{4\times 2+1}-\sqrt{9\times 2-2}=-1
Substitute 2 for x in the equation \sqrt{4x+1}-\sqrt{9x-2}=-1.
-1=-1
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{4x+1}=\sqrt{9x-2}-1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}