Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\left(\sqrt{4n+3}\right)^{2}=n^{2}
Square both sides of the equation.
4n+3=n^{2}
Calculate \sqrt{4n+3} to the power of 2 and get 4n+3.
4n+3-n^{2}=0
Subtract n^{2} from both sides.
-n^{2}+4n+3=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
n=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 3 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-4±\sqrt{16-4\left(-1\right)\times 3}}{2\left(-1\right)}
Square 4.
n=\frac{-4±\sqrt{16+4\times 3}}{2\left(-1\right)}
Multiply -4 times -1.
n=\frac{-4±\sqrt{16+12}}{2\left(-1\right)}
Multiply 4 times 3.
n=\frac{-4±\sqrt{28}}{2\left(-1\right)}
Add 16 to 12.
n=\frac{-4±2\sqrt{7}}{2\left(-1\right)}
Take the square root of 28.
n=\frac{-4±2\sqrt{7}}{-2}
Multiply 2 times -1.
n=\frac{2\sqrt{7}-4}{-2}
Now solve the equation n=\frac{-4±2\sqrt{7}}{-2} when ± is plus. Add -4 to 2\sqrt{7}.
n=2-\sqrt{7}
Divide -4+2\sqrt{7} by -2.
n=\frac{-2\sqrt{7}-4}{-2}
Now solve the equation n=\frac{-4±2\sqrt{7}}{-2} when ± is minus. Subtract 2\sqrt{7} from -4.
n=\sqrt{7}+2
Divide -4-2\sqrt{7} by -2.
n=2-\sqrt{7} n=\sqrt{7}+2
The equation is now solved.
\sqrt{4\left(2-\sqrt{7}\right)+3}=2-\sqrt{7}
Substitute 2-\sqrt{7} for n in the equation \sqrt{4n+3}=n.
7^{\frac{1}{2}}-2=2-7^{\frac{1}{2}}
Simplify. The value n=2-\sqrt{7} does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{4\left(\sqrt{7}+2\right)+3}=\sqrt{7}+2
Substitute \sqrt{7}+2 for n in the equation \sqrt{4n+3}=n.
2+7^{\frac{1}{2}}=2+7^{\frac{1}{2}}
Simplify. The value n=\sqrt{7}+2 satisfies the equation.
n=\sqrt{7}+2
Equation \sqrt{4n+3}=n has a unique solution.