Solve for x (complex solution)
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}\approx 15.982325934+7.366910212i
x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}\approx 15.982325934-7.366910212i
Graph
Share
Copied to clipboard
\sqrt{4578}x^{2}-\sqrt{4677521}x+31478-10523=0
Subtract 10523 from both sides.
\sqrt{4578}x^{2}-\sqrt{4677521}x+20955=0
Subtract 10523 from 31478 to get 20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x+20955=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{\left(-\sqrt{4677521}\right)^{2}-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \sqrt{4578} for a, -\sqrt{4677521} for b, and 20955 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-4\sqrt{4578}\times 20955}}{2\sqrt{4578}}
Square -\sqrt{4677521}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521+\left(-4\sqrt{4578}\right)\times 20955}}{2\sqrt{4578}}
Multiply -4 times \sqrt{4578}.
x=\frac{-\left(-\sqrt{4677521}\right)±\sqrt{4677521-83820\sqrt{4578}}}{2\sqrt{4578}}
Multiply -4\sqrt{4578} times 20955.
x=\frac{-\left(-\sqrt{4677521}\right)±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
Take the square root of 4677521-83820\sqrt{4578}.
x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}}
The opposite of -\sqrt{4677521} is \sqrt{4677521}.
x=\frac{\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}}{2\sqrt{4578}}
Now solve the equation x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} when ± is plus. Add \sqrt{4677521} to i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156}
Divide \sqrt{4677521}+i\sqrt{-4677521+83820\sqrt{4578}} by 2\sqrt{4578}.
x=\frac{-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}}{2\sqrt{4578}}
Now solve the equation x=\frac{\sqrt{4677521}±i\sqrt{-\left(4677521-83820\sqrt{4578}\right)}}{2\sqrt{4578}} when ± is minus. Subtract i\sqrt{-\left(4677521-83820\sqrt{4578}\right)} from \sqrt{4677521}.
x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
Divide \sqrt{4677521}-i\sqrt{-4677521+83820\sqrt{4578}} by 2\sqrt{4578}.
x=\frac{\sqrt{4578}\left(\sqrt{4677521}+i\sqrt{83820\sqrt{4578}-4677521}\right)}{9156} x=\frac{\sqrt{4578}\left(-i\sqrt{83820\sqrt{4578}-4677521}+\sqrt{4677521}\right)}{9156}
The equation is now solved.
\sqrt{4578}x^{2}-\sqrt{4677521}x=10523-31478
Subtract 31478 from both sides.
\sqrt{4578}x^{2}-\sqrt{4677521}x=-20955
Subtract 31478 from 10523 to get -20955.
\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x=-20955
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\sqrt{4578}x^{2}+\left(-\sqrt{4677521}\right)x}{\sqrt{4578}}=-\frac{20955}{\sqrt{4578}}
Divide both sides by \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{4677521}}{\sqrt{4578}}\right)x=-\frac{20955}{\sqrt{4578}}
Dividing by \sqrt{4578} undoes the multiplication by \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{20955}{\sqrt{4578}}
Divide -\sqrt{4677521} by \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x=-\frac{6985\sqrt{4578}}{1526}
Divide -20955 by \sqrt{4578}.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\left(-\frac{\sqrt{21413691138}}{9156}\right)^{2}
Divide -\frac{\sqrt{21413691138}}{4578}, the coefficient of the x term, by 2 to get -\frac{\sqrt{21413691138}}{9156}. Then add the square of -\frac{\sqrt{21413691138}}{9156} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Square -\frac{\sqrt{21413691138}}{9156}.
\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}=-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}
Factor x^{2}+\left(-\frac{\sqrt{21413691138}}{4578}\right)x+\frac{4677521}{18312}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{\sqrt{21413691138}}{9156}\right)^{2}}=\sqrt{-\frac{6985\sqrt{4578}}{1526}+\frac{4677521}{18312}}
Take the square root of both sides of the equation.
x-\frac{\sqrt{21413691138}}{9156}=\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x-\frac{\sqrt{21413691138}}{9156}=-\frac{i\sqrt{383727960\sqrt{4578}-21413691138}}{9156}
Simplify.
x=\frac{\sqrt{21413691138}+i\sqrt{383727960\sqrt{4578}-21413691138}}{9156} x=\frac{-i\sqrt{383727960\sqrt{4578}-21413691138}+\sqrt{21413691138}}{9156}
Add \frac{\sqrt{21413691138}}{9156} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}