Skip to main content
Evaluate
Tick mark Image

Share

\sqrt{15-\frac{12}{4}}+\sqrt{\left(1+\frac{21}{3}\right)\left(1+\frac{25}{5}\right)}
Divide 45 by 3 to get 15.
\sqrt{15-3}+\sqrt{\left(1+\frac{21}{3}\right)\left(1+\frac{25}{5}\right)}
Divide 12 by 4 to get 3.
\sqrt{12}+\sqrt{\left(1+\frac{21}{3}\right)\left(1+\frac{25}{5}\right)}
Subtract 3 from 15 to get 12.
2\sqrt{3}+\sqrt{\left(1+\frac{21}{3}\right)\left(1+\frac{25}{5}\right)}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
2\sqrt{3}+\sqrt{\left(1+7\right)\left(1+\frac{25}{5}\right)}
Divide 21 by 3 to get 7.
2\sqrt{3}+\sqrt{8\left(1+\frac{25}{5}\right)}
Add 1 and 7 to get 8.
2\sqrt{3}+\sqrt{8\left(1+5\right)}
Divide 25 by 5 to get 5.
2\sqrt{3}+\sqrt{8\times 6}
Add 1 and 5 to get 6.
2\sqrt{3}+\sqrt{48}
Multiply 8 and 6 to get 48.
2\sqrt{3}+4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
6\sqrt{3}
Combine 2\sqrt{3} and 4\sqrt{3} to get 6\sqrt{3}.