Solve for x
x=\frac{17\sqrt{5}}{45}\approx 0.844736791
Graph
Share
Copied to clipboard
15x\sqrt{45}-85=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 15x.
15x\times 3\sqrt{5}-85=0
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
45x\sqrt{5}-85=0
Multiply 15 and 3 to get 45.
45x\sqrt{5}=85
Add 85 to both sides. Anything plus zero gives itself.
45\sqrt{5}x=85
The equation is in standard form.
\frac{45\sqrt{5}x}{45\sqrt{5}}=\frac{85}{45\sqrt{5}}
Divide both sides by 45\sqrt{5}.
x=\frac{85}{45\sqrt{5}}
Dividing by 45\sqrt{5} undoes the multiplication by 45\sqrt{5}.
x=\frac{17\sqrt{5}}{45}
Divide 85 by 45\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}