Evaluate
\frac{241\sqrt{705}}{30}\approx 213.299749961
Share
Copied to clipboard
241\sqrt{\frac{47}{60}}
Expand \frac{4.7}{6} by multiplying both numerator and the denominator by 10.
241\times \frac{\sqrt{47}}{\sqrt{60}}
Rewrite the square root of the division \sqrt{\frac{47}{60}} as the division of square roots \frac{\sqrt{47}}{\sqrt{60}}.
241\times \frac{\sqrt{47}}{2\sqrt{15}}
Factor 60=2^{2}\times 15. Rewrite the square root of the product \sqrt{2^{2}\times 15} as the product of square roots \sqrt{2^{2}}\sqrt{15}. Take the square root of 2^{2}.
241\times \frac{\sqrt{47}\sqrt{15}}{2\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{47}}{2\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
241\times \frac{\sqrt{47}\sqrt{15}}{2\times 15}
The square of \sqrt{15} is 15.
241\times \frac{\sqrt{705}}{2\times 15}
To multiply \sqrt{47} and \sqrt{15}, multiply the numbers under the square root.
241\times \frac{\sqrt{705}}{30}
Multiply 2 and 15 to get 30.
\frac{241\sqrt{705}}{30}
Express 241\times \frac{\sqrt{705}}{30} as a single fraction.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}