Solve for x
x=\frac{1}{2}=0.5
Graph
Share
Copied to clipboard
\left(\sqrt{4-3x}\right)^{2}=\left(\sqrt{x+2}\right)^{2}
Square both sides of the equation.
4-3x=\left(\sqrt{x+2}\right)^{2}
Calculate \sqrt{4-3x} to the power of 2 and get 4-3x.
4-3x=x+2
Calculate \sqrt{x+2} to the power of 2 and get x+2.
4-3x-x=2
Subtract x from both sides.
4-4x=2
Combine -3x and -x to get -4x.
-4x=2-4
Subtract 4 from both sides.
-4x=-2
Subtract 4 from 2 to get -2.
x=\frac{-2}{-4}
Divide both sides by -4.
x=\frac{1}{2}
Reduce the fraction \frac{-2}{-4} to lowest terms by extracting and canceling out -2.
\sqrt{4-3\times \frac{1}{2}}=\sqrt{\frac{1}{2}+2}
Substitute \frac{1}{2} for x in the equation \sqrt{4-3x}=\sqrt{x+2}.
\frac{1}{2}\times 10^{\frac{1}{2}}=\frac{1}{2}\times 10^{\frac{1}{2}}
Simplify. The value x=\frac{1}{2} satisfies the equation.
x=\frac{1}{2}
Equation \sqrt{4-3x}=\sqrt{x+2} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}