Solve for x
x=3
Graph
Share
Copied to clipboard
\left(\sqrt{4+2x-x^{2}}\right)^{2}=\left(x-2\right)^{2}
Square both sides of the equation.
4+2x-x^{2}=\left(x-2\right)^{2}
Calculate \sqrt{4+2x-x^{2}} to the power of 2 and get 4+2x-x^{2}.
4+2x-x^{2}=x^{2}-4x+4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
4+2x-x^{2}-x^{2}=-4x+4
Subtract x^{2} from both sides.
4+2x-2x^{2}=-4x+4
Combine -x^{2} and -x^{2} to get -2x^{2}.
4+2x-2x^{2}+4x=4
Add 4x to both sides.
4+6x-2x^{2}=4
Combine 2x and 4x to get 6x.
4+6x-2x^{2}-4=0
Subtract 4 from both sides.
6x-2x^{2}=0
Subtract 4 from 4 to get 0.
x\left(6-2x\right)=0
Factor out x.
x=0 x=3
To find equation solutions, solve x=0 and 6-2x=0.
\sqrt{4+2\times 0-0^{2}}=0-2
Substitute 0 for x in the equation \sqrt{4+2x-x^{2}}=x-2.
2=-2
Simplify. The value x=0 does not satisfy the equation because the left and the right hand side have opposite signs.
\sqrt{4+2\times 3-3^{2}}=3-2
Substitute 3 for x in the equation \sqrt{4+2x-x^{2}}=x-2.
1=1
Simplify. The value x=3 satisfies the equation.
x=3
Equation \sqrt{4+2x-x^{2}}=x-2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}