Solve for x
x=\sqrt{2}\approx 1.414213562
x=-\sqrt{2}\approx -1.414213562
Graph
Share
Copied to clipboard
\sqrt{4x^{2}-1}=\sqrt{5x^{2}-3}
Subtract -\sqrt{5x^{2}-3} from both sides of the equation.
\left(\sqrt{4x^{2}-1}\right)^{2}=\left(\sqrt{5x^{2}-3}\right)^{2}
Square both sides of the equation.
4x^{2}-1=\left(\sqrt{5x^{2}-3}\right)^{2}
Calculate \sqrt{4x^{2}-1} to the power of 2 and get 4x^{2}-1.
4x^{2}-1=5x^{2}-3
Calculate \sqrt{5x^{2}-3} to the power of 2 and get 5x^{2}-3.
4x^{2}-1-5x^{2}=-3
Subtract 5x^{2} from both sides.
-x^{2}-1=-3
Combine 4x^{2} and -5x^{2} to get -x^{2}.
-x^{2}=-3+1
Add 1 to both sides.
-x^{2}=-2
Add -3 and 1 to get -2.
x^{2}=\frac{-2}{-1}
Divide both sides by -1.
x^{2}=2
Fraction \frac{-2}{-1} can be simplified to 2 by removing the negative sign from both the numerator and the denominator.
x=\sqrt{2} x=-\sqrt{2}
Take the square root of both sides of the equation.
\sqrt{4\left(\sqrt{2}\right)^{2}-1}-\sqrt{5\left(\sqrt{2}\right)^{2}-3}=0
Substitute \sqrt{2} for x in the equation \sqrt{4x^{2}-1}-\sqrt{5x^{2}-3}=0.
0=0
Simplify. The value x=\sqrt{2} satisfies the equation.
\sqrt{4\left(-\sqrt{2}\right)^{2}-1}-\sqrt{5\left(-\sqrt{2}\right)^{2}-3}=0
Substitute -\sqrt{2} for x in the equation \sqrt{4x^{2}-1}-\sqrt{5x^{2}-3}=0.
0=0
Simplify. The value x=-\sqrt{2} satisfies the equation.
x=\sqrt{2} x=-\sqrt{2}
List all solutions of \sqrt{4x^{2}-1}=\sqrt{5x^{2}-3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}