Solve for x
x=4
Graph
Share
Copied to clipboard
\left(\sqrt{3x-8}+1\right)^{2}=\left(\sqrt{x+5}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3x-8}\right)^{2}+2\sqrt{3x-8}+1=\left(\sqrt{x+5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x-8}+1\right)^{2}.
3x-8+2\sqrt{3x-8}+1=\left(\sqrt{x+5}\right)^{2}
Calculate \sqrt{3x-8} to the power of 2 and get 3x-8.
3x-7+2\sqrt{3x-8}=\left(\sqrt{x+5}\right)^{2}
Add -8 and 1 to get -7.
3x-7+2\sqrt{3x-8}=x+5
Calculate \sqrt{x+5} to the power of 2 and get x+5.
2\sqrt{3x-8}=x+5-\left(3x-7\right)
Subtract 3x-7 from both sides of the equation.
2\sqrt{3x-8}=x+5-3x+7
To find the opposite of 3x-7, find the opposite of each term.
2\sqrt{3x-8}=-2x+5+7
Combine x and -3x to get -2x.
2\sqrt{3x-8}=-2x+12
Add 5 and 7 to get 12.
\left(2\sqrt{3x-8}\right)^{2}=\left(-2x+12\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{3x-8}\right)^{2}=\left(-2x+12\right)^{2}
Expand \left(2\sqrt{3x-8}\right)^{2}.
4\left(\sqrt{3x-8}\right)^{2}=\left(-2x+12\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(3x-8\right)=\left(-2x+12\right)^{2}
Calculate \sqrt{3x-8} to the power of 2 and get 3x-8.
12x-32=\left(-2x+12\right)^{2}
Use the distributive property to multiply 4 by 3x-8.
12x-32=4x^{2}-48x+144
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(-2x+12\right)^{2}.
12x-32-4x^{2}=-48x+144
Subtract 4x^{2} from both sides.
12x-32-4x^{2}+48x=144
Add 48x to both sides.
60x-32-4x^{2}=144
Combine 12x and 48x to get 60x.
60x-32-4x^{2}-144=0
Subtract 144 from both sides.
60x-176-4x^{2}=0
Subtract 144 from -32 to get -176.
15x-44-x^{2}=0
Divide both sides by 4.
-x^{2}+15x-44=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=15 ab=-\left(-44\right)=44
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -x^{2}+ax+bx-44. To find a and b, set up a system to be solved.
1,44 2,22 4,11
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 44.
1+44=45 2+22=24 4+11=15
Calculate the sum for each pair.
a=11 b=4
The solution is the pair that gives sum 15.
\left(-x^{2}+11x\right)+\left(4x-44\right)
Rewrite -x^{2}+15x-44 as \left(-x^{2}+11x\right)+\left(4x-44\right).
-x\left(x-11\right)+4\left(x-11\right)
Factor out -x in the first and 4 in the second group.
\left(x-11\right)\left(-x+4\right)
Factor out common term x-11 by using distributive property.
x=11 x=4
To find equation solutions, solve x-11=0 and -x+4=0.
\sqrt{3\times 11-8}+1=\sqrt{11+5}
Substitute 11 for x in the equation \sqrt{3x-8}+1=\sqrt{x+5}.
6=4
Simplify. The value x=11 does not satisfy the equation.
\sqrt{3\times 4-8}+1=\sqrt{4+5}
Substitute 4 for x in the equation \sqrt{3x-8}+1=\sqrt{x+5}.
3=3
Simplify. The value x=4 satisfies the equation.
x=4
Equation \sqrt{3x-8}+1=\sqrt{x+5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}