Solve for x
x=12
Graph
Share
Copied to clipboard
\left(\sqrt{3x-11}+\sqrt{3x}\right)^{2}=\left(\sqrt{12x-23}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3x-11}\right)^{2}+2\sqrt{3x-11}\sqrt{3x}+\left(\sqrt{3x}\right)^{2}=\left(\sqrt{12x-23}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x-11}+\sqrt{3x}\right)^{2}.
3x-11+2\sqrt{3x-11}\sqrt{3x}+\left(\sqrt{3x}\right)^{2}=\left(\sqrt{12x-23}\right)^{2}
Calculate \sqrt{3x-11} to the power of 2 and get 3x-11.
3x-11+2\sqrt{3x-11}\sqrt{3x}+3x=\left(\sqrt{12x-23}\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
6x-11+2\sqrt{3x-11}\sqrt{3x}=\left(\sqrt{12x-23}\right)^{2}
Combine 3x and 3x to get 6x.
6x-11+2\sqrt{3x-11}\sqrt{3x}=12x-23
Calculate \sqrt{12x-23} to the power of 2 and get 12x-23.
2\sqrt{3x-11}\sqrt{3x}=12x-23-\left(6x-11\right)
Subtract 6x-11 from both sides of the equation.
2\sqrt{3x-11}\sqrt{3x}=12x-23-6x+11
To find the opposite of 6x-11, find the opposite of each term.
2\sqrt{3x-11}\sqrt{3x}=6x-23+11
Combine 12x and -6x to get 6x.
2\sqrt{3x-11}\sqrt{3x}=6x-12
Add -23 and 11 to get -12.
\left(2\sqrt{3x-11}\sqrt{3x}\right)^{2}=\left(6x-12\right)^{2}
Square both sides of the equation.
2^{2}\left(\sqrt{3x-11}\right)^{2}\left(\sqrt{3x}\right)^{2}=\left(6x-12\right)^{2}
Expand \left(2\sqrt{3x-11}\sqrt{3x}\right)^{2}.
4\left(\sqrt{3x-11}\right)^{2}\left(\sqrt{3x}\right)^{2}=\left(6x-12\right)^{2}
Calculate 2 to the power of 2 and get 4.
4\left(3x-11\right)\left(\sqrt{3x}\right)^{2}=\left(6x-12\right)^{2}
Calculate \sqrt{3x-11} to the power of 2 and get 3x-11.
4\left(3x-11\right)\times 3x=\left(6x-12\right)^{2}
Calculate \sqrt{3x} to the power of 2 and get 3x.
12\left(3x-11\right)x=\left(6x-12\right)^{2}
Multiply 4 and 3 to get 12.
\left(36x-132\right)x=\left(6x-12\right)^{2}
Use the distributive property to multiply 12 by 3x-11.
36x^{2}-132x=\left(6x-12\right)^{2}
Use the distributive property to multiply 36x-132 by x.
36x^{2}-132x=36x^{2}-144x+144
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6x-12\right)^{2}.
36x^{2}-132x-36x^{2}=-144x+144
Subtract 36x^{2} from both sides.
-132x=-144x+144
Combine 36x^{2} and -36x^{2} to get 0.
-132x+144x=144
Add 144x to both sides.
12x=144
Combine -132x and 144x to get 12x.
x=\frac{144}{12}
Divide both sides by 12.
x=12
Divide 144 by 12 to get 12.
\sqrt{3\times 12-11}+\sqrt{3\times 12}=\sqrt{12\times 12-23}
Substitute 12 for x in the equation \sqrt{3x-11}+\sqrt{3x}=\sqrt{12x-23}.
11=11
Simplify. The value x=12 satisfies the equation.
x=12
Equation \sqrt{3x-11}+\sqrt{3x}=\sqrt{12x-23} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}