Solve for x
x=\frac{2}{3}\approx 0.666666667
Graph
Share
Copied to clipboard
\left(\sqrt{3x+7}\right)^{2}=\left(4-\sqrt{3x-1}\right)^{2}
Square both sides of the equation.
3x+7=\left(4-\sqrt{3x-1}\right)^{2}
Calculate \sqrt{3x+7} to the power of 2 and get 3x+7.
3x+7=16-8\sqrt{3x-1}+\left(\sqrt{3x-1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{3x-1}\right)^{2}.
3x+7=16-8\sqrt{3x-1}+3x-1
Calculate \sqrt{3x-1} to the power of 2 and get 3x-1.
3x+7=15-8\sqrt{3x-1}+3x
Subtract 1 from 16 to get 15.
3x+7+8\sqrt{3x-1}=15+3x
Add 8\sqrt{3x-1} to both sides.
3x+7+8\sqrt{3x-1}-3x=15
Subtract 3x from both sides.
7+8\sqrt{3x-1}=15
Combine 3x and -3x to get 0.
8\sqrt{3x-1}=15-7
Subtract 7 from both sides.
8\sqrt{3x-1}=8
Subtract 7 from 15 to get 8.
\sqrt{3x-1}=\frac{8}{8}
Divide both sides by 8.
\sqrt{3x-1}=1
Divide 8 by 8 to get 1.
3x-1=1
Square both sides of the equation.
3x-1-\left(-1\right)=1-\left(-1\right)
Add 1 to both sides of the equation.
3x=1-\left(-1\right)
Subtracting -1 from itself leaves 0.
3x=2
Subtract -1 from 1.
\frac{3x}{3}=\frac{2}{3}
Divide both sides by 3.
x=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
\sqrt{3\times \frac{2}{3}+7}=4-\sqrt{3\times \frac{2}{3}-1}
Substitute \frac{2}{3} for x in the equation \sqrt{3x+7}=4-\sqrt{3x-1}.
3=3
Simplify. The value x=\frac{2}{3} satisfies the equation.
x=\frac{2}{3}
Equation \sqrt{3x+7}=-\sqrt{3x-1}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}