Solve for x
x=5
Graph
Share
Copied to clipboard
\left(\sqrt{3x+1}+2\right)^{2}=\left(\sqrt{8x-4}\right)^{2}
Square both sides of the equation.
\left(\sqrt{3x+1}\right)^{2}+4\sqrt{3x+1}+4=\left(\sqrt{8x-4}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{3x+1}+2\right)^{2}.
3x+1+4\sqrt{3x+1}+4=\left(\sqrt{8x-4}\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
3x+5+4\sqrt{3x+1}=\left(\sqrt{8x-4}\right)^{2}
Add 1 and 4 to get 5.
3x+5+4\sqrt{3x+1}=8x-4
Calculate \sqrt{8x-4} to the power of 2 and get 8x-4.
4\sqrt{3x+1}=8x-4-\left(3x+5\right)
Subtract 3x+5 from both sides of the equation.
4\sqrt{3x+1}=8x-4-3x-5
To find the opposite of 3x+5, find the opposite of each term.
4\sqrt{3x+1}=5x-4-5
Combine 8x and -3x to get 5x.
4\sqrt{3x+1}=5x-9
Subtract 5 from -4 to get -9.
\left(4\sqrt{3x+1}\right)^{2}=\left(5x-9\right)^{2}
Square both sides of the equation.
4^{2}\left(\sqrt{3x+1}\right)^{2}=\left(5x-9\right)^{2}
Expand \left(4\sqrt{3x+1}\right)^{2}.
16\left(\sqrt{3x+1}\right)^{2}=\left(5x-9\right)^{2}
Calculate 4 to the power of 2 and get 16.
16\left(3x+1\right)=\left(5x-9\right)^{2}
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
48x+16=\left(5x-9\right)^{2}
Use the distributive property to multiply 16 by 3x+1.
48x+16=25x^{2}-90x+81
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(5x-9\right)^{2}.
48x+16-25x^{2}=-90x+81
Subtract 25x^{2} from both sides.
48x+16-25x^{2}+90x=81
Add 90x to both sides.
138x+16-25x^{2}=81
Combine 48x and 90x to get 138x.
138x+16-25x^{2}-81=0
Subtract 81 from both sides.
138x-65-25x^{2}=0
Subtract 81 from 16 to get -65.
-25x^{2}+138x-65=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-138±\sqrt{138^{2}-4\left(-25\right)\left(-65\right)}}{2\left(-25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -25 for a, 138 for b, and -65 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-138±\sqrt{19044-4\left(-25\right)\left(-65\right)}}{2\left(-25\right)}
Square 138.
x=\frac{-138±\sqrt{19044+100\left(-65\right)}}{2\left(-25\right)}
Multiply -4 times -25.
x=\frac{-138±\sqrt{19044-6500}}{2\left(-25\right)}
Multiply 100 times -65.
x=\frac{-138±\sqrt{12544}}{2\left(-25\right)}
Add 19044 to -6500.
x=\frac{-138±112}{2\left(-25\right)}
Take the square root of 12544.
x=\frac{-138±112}{-50}
Multiply 2 times -25.
x=-\frac{26}{-50}
Now solve the equation x=\frac{-138±112}{-50} when ± is plus. Add -138 to 112.
x=\frac{13}{25}
Reduce the fraction \frac{-26}{-50} to lowest terms by extracting and canceling out 2.
x=-\frac{250}{-50}
Now solve the equation x=\frac{-138±112}{-50} when ± is minus. Subtract 112 from -138.
x=5
Divide -250 by -50.
x=\frac{13}{25} x=5
The equation is now solved.
\sqrt{3\times \frac{13}{25}+1}+2=\sqrt{8\times \frac{13}{25}-4}
Substitute \frac{13}{25} for x in the equation \sqrt{3x+1}+2=\sqrt{8x-4}.
\frac{18}{5}=\frac{2}{5}
Simplify. The value x=\frac{13}{25} does not satisfy the equation.
\sqrt{3\times 5+1}+2=\sqrt{8\times 5-4}
Substitute 5 for x in the equation \sqrt{3x+1}+2=\sqrt{8x-4}.
6=6
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{3x+1}+2=\sqrt{8x-4} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}