Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Use the distributive property to multiply \sqrt{37} by 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Use the distributive property to multiply -\sqrt{149} by 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Multiply -1 and -1 to get 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Multiply -23 and -1 to get 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}
Subtract 6\left(-\sqrt{149}\right)x from both sides.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\left(-1\right)\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Multiply -1 and 6 to get -6.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}
Multiply -6 and -1 to get 6.
10\sqrt{37}x+5\sqrt{37}+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y
Subtract 7\sqrt{37}y from both sides.
10\sqrt{37}x+6\sqrt{149}x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Subtract 5\sqrt{37} from both sides.
\left(10\sqrt{37}+6\sqrt{149}\right)x=\sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Combine all terms containing x.
\left(6\sqrt{149}+10\sqrt{37}\right)x=\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}
The equation is in standard form.
\frac{\left(6\sqrt{149}+10\sqrt{37}\right)x}{6\sqrt{149}+10\sqrt{37}}=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Divide both sides by 10\sqrt{37}+6\sqrt{149}.
x=\frac{\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}}{6\sqrt{149}+10\sqrt{37}}
Dividing by 10\sqrt{37}+6\sqrt{149} undoes the multiplication by 10\sqrt{37}+6\sqrt{149}.
x=\frac{\frac{3\sqrt{149}-5\sqrt{37}}{416}\left(\sqrt{149}y-7\sqrt{37}y+23\sqrt{149}-5\sqrt{37}\right)}{2}
Divide \sqrt{149}y+23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} by 10\sqrt{37}+6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\left(-\sqrt{149}\right)\left(6x-y-23\right)
Use the distributive property to multiply \sqrt{37} by 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x-\left(-\sqrt{149}\right)y-23\left(-\sqrt{149}\right)
Use the distributive property to multiply -\sqrt{149} by 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y-23\left(-\sqrt{149}\right)
Multiply -1 and -1 to get 1.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\left(-\sqrt{149}\right)x+\sqrt{149}y+23\sqrt{149}
Multiply -23 and -1 to get 23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=6\left(-\sqrt{149}\right)x+23\sqrt{149}
Subtract \sqrt{149}y from both sides.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}
Multiply 6 and -1 to get -6.
7\sqrt{37}y+5\sqrt{37}-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x
Subtract 10\sqrt{37}x from both sides.
7\sqrt{37}y-\sqrt{149}y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Subtract 5\sqrt{37} from both sides.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Combine all terms containing y.
\left(7\sqrt{37}-\sqrt{149}\right)y=-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}
The equation is in standard form.
\frac{\left(7\sqrt{37}-\sqrt{149}\right)y}{7\sqrt{37}-\sqrt{149}}=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Divide both sides by 7\sqrt{37}-\sqrt{149}.
y=\frac{-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}}{7\sqrt{37}-\sqrt{149}}
Dividing by 7\sqrt{37}-\sqrt{149} undoes the multiplication by 7\sqrt{37}-\sqrt{149}.
y=\frac{\sqrt{149}+7\sqrt{37}}{1664}\left(-6\sqrt{149}x-10\sqrt{37}x+23\sqrt{149}-5\sqrt{37}\right)
Divide -6\sqrt{149}x+23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} by 7\sqrt{37}-\sqrt{149}.