Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
Use the distributive property to multiply \sqrt{37} by 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
Use the distributive property to multiply \sqrt{149} by 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}
Subtract 6\sqrt{149}x from both sides.
10\sqrt{37}x+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y
Subtract 7\sqrt{37}y from both sides.
10\sqrt{37}x-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Subtract 5\sqrt{37} from both sides.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
Combine all terms containing x.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}
The equation is in standard form.
\frac{\left(10\sqrt{37}-6\sqrt{149}\right)x}{10\sqrt{37}-6\sqrt{149}}=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
Divide both sides by 10\sqrt{37}-6\sqrt{149}.
x=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
Dividing by 10\sqrt{37}-6\sqrt{149} undoes the multiplication by 10\sqrt{37}-6\sqrt{149}.
x=\frac{\frac{3\sqrt{149}+5\sqrt{37}}{416}\left(7\sqrt{37}y+\sqrt{149}y+5\sqrt{37}+23\sqrt{149}\right)}{2}
Divide -\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} by 10\sqrt{37}-6\sqrt{149}.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
Use the distributive property to multiply \sqrt{37} by 10x+7y+5.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
Use the distributive property to multiply \sqrt{149} by 6x-y-23.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}
Add \sqrt{149}y to both sides.
7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x
Subtract 10\sqrt{37}x from both sides.
7\sqrt{37}y+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Subtract 5\sqrt{37} from both sides.
\left(7\sqrt{37}+\sqrt{149}\right)y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
Combine all terms containing y.
\left(\sqrt{149}+7\sqrt{37}\right)y=6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}
The equation is in standard form.
\frac{\left(\sqrt{149}+7\sqrt{37}\right)y}{\sqrt{149}+7\sqrt{37}}=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
Divide both sides by 7\sqrt{37}+\sqrt{149}.
y=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
Dividing by 7\sqrt{37}+\sqrt{149} undoes the multiplication by 7\sqrt{37}+\sqrt{149}.
y=\frac{\sqrt{5513}x-67x+41-3\sqrt{5513}}{32}
Divide 6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} by 7\sqrt{37}+\sqrt{149}.