\sqrt{ 3. } (x-2)= \sqrt{ 48 }
Solve for x
x=6
Graph
Share
Copied to clipboard
\sqrt{3}x-2\sqrt{3}=\sqrt{48}
Use the distributive property to multiply \sqrt{3} by x-2.
\sqrt{3}x-2\sqrt{3}=4\sqrt{3}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\sqrt{3}x=4\sqrt{3}+2\sqrt{3}
Add 2\sqrt{3} to both sides.
\sqrt{3}x=6\sqrt{3}
Combine 4\sqrt{3} and 2\sqrt{3} to get 6\sqrt{3}.
\frac{\sqrt{3}x}{\sqrt{3}}=\frac{6\sqrt{3}}{\sqrt{3}}
Divide both sides by \sqrt{3}.
x=\frac{6\sqrt{3}}{\sqrt{3}}
Dividing by \sqrt{3} undoes the multiplication by \sqrt{3}.
x=6
Divide 6\sqrt{3} by \sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}