Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3-\left(\frac{2}{3}\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(\frac{2}{3}\sqrt{3}\right)^{2}.
\sqrt{3-\frac{4}{9}\left(\sqrt{3}\right)^{2}}
Calculate \frac{2}{3} to the power of 2 and get \frac{4}{9}.
\sqrt{3-\frac{4}{9}\times 3}
The square of \sqrt{3} is 3.
\sqrt{3-\frac{4}{3}}
Multiply \frac{4}{9} and 3 to get \frac{4}{3}.
\sqrt{\frac{5}{3}}
Subtract \frac{4}{3} from 3 to get \frac{5}{3}.
\frac{\sqrt{5}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{5}{3}} as the division of square roots \frac{\sqrt{5}}{\sqrt{3}}.
\frac{\sqrt{5}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{5}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{5}\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{\sqrt{15}}{3}
To multiply \sqrt{5} and \sqrt{3}, multiply the numbers under the square root.