Evaluate
\frac{3\sqrt{2193009}}{290}\approx 15.319460241
Share
Copied to clipboard
\sqrt{\frac{819\times 8.31}{29}}
Multiply 3 and 273 to get 819.
\sqrt{\frac{6805.89}{29}}
Multiply 819 and 8.31 to get 6805.89.
\sqrt{\frac{680589}{2900}}
Expand \frac{6805.89}{29} by multiplying both numerator and the denominator by 100.
\frac{\sqrt{680589}}{\sqrt{2900}}
Rewrite the square root of the division \sqrt{\frac{680589}{2900}} as the division of square roots \frac{\sqrt{680589}}{\sqrt{2900}}.
\frac{3\sqrt{75621}}{\sqrt{2900}}
Factor 680589=3^{2}\times 75621. Rewrite the square root of the product \sqrt{3^{2}\times 75621} as the product of square roots \sqrt{3^{2}}\sqrt{75621}. Take the square root of 3^{2}.
\frac{3\sqrt{75621}}{10\sqrt{29}}
Factor 2900=10^{2}\times 29. Rewrite the square root of the product \sqrt{10^{2}\times 29} as the product of square roots \sqrt{10^{2}}\sqrt{29}. Take the square root of 10^{2}.
\frac{3\sqrt{75621}\sqrt{29}}{10\left(\sqrt{29}\right)^{2}}
Rationalize the denominator of \frac{3\sqrt{75621}}{10\sqrt{29}} by multiplying numerator and denominator by \sqrt{29}.
\frac{3\sqrt{75621}\sqrt{29}}{10\times 29}
The square of \sqrt{29} is 29.
\frac{3\sqrt{2193009}}{10\times 29}
To multiply \sqrt{75621} and \sqrt{29}, multiply the numbers under the square root.
\frac{3\sqrt{2193009}}{290}
Multiply 10 and 29 to get 290.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}