Solve for x
x = \frac{\sqrt{105} + 13}{6} \approx 3.874491794
Graph
Share
Copied to clipboard
\left(\sqrt{3\sqrt{x+1}}\right)^{2}=\left(\sqrt{3x-5}\right)^{2}
Square both sides of the equation.
3\sqrt{x+1}=\left(\sqrt{3x-5}\right)^{2}
Calculate \sqrt{3\sqrt{x+1}} to the power of 2 and get 3\sqrt{x+1}.
3\sqrt{x+1}=3x-5
Calculate \sqrt{3x-5} to the power of 2 and get 3x-5.
\left(3\sqrt{x+1}\right)^{2}=\left(3x-5\right)^{2}
Square both sides of the equation.
3^{2}\left(\sqrt{x+1}\right)^{2}=\left(3x-5\right)^{2}
Expand \left(3\sqrt{x+1}\right)^{2}.
9\left(\sqrt{x+1}\right)^{2}=\left(3x-5\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\left(x+1\right)=\left(3x-5\right)^{2}
Calculate \sqrt{x+1} to the power of 2 and get x+1.
9x+9=\left(3x-5\right)^{2}
Use the distributive property to multiply 9 by x+1.
9x+9=9x^{2}-30x+25
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3x-5\right)^{2}.
9x+9-9x^{2}=-30x+25
Subtract 9x^{2} from both sides.
9x+9-9x^{2}+30x=25
Add 30x to both sides.
39x+9-9x^{2}=25
Combine 9x and 30x to get 39x.
39x+9-9x^{2}-25=0
Subtract 25 from both sides.
39x-16-9x^{2}=0
Subtract 25 from 9 to get -16.
-9x^{2}+39x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-39±\sqrt{39^{2}-4\left(-9\right)\left(-16\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 39 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-39±\sqrt{1521-4\left(-9\right)\left(-16\right)}}{2\left(-9\right)}
Square 39.
x=\frac{-39±\sqrt{1521+36\left(-16\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-39±\sqrt{1521-576}}{2\left(-9\right)}
Multiply 36 times -16.
x=\frac{-39±\sqrt{945}}{2\left(-9\right)}
Add 1521 to -576.
x=\frac{-39±3\sqrt{105}}{2\left(-9\right)}
Take the square root of 945.
x=\frac{-39±3\sqrt{105}}{-18}
Multiply 2 times -9.
x=\frac{3\sqrt{105}-39}{-18}
Now solve the equation x=\frac{-39±3\sqrt{105}}{-18} when ± is plus. Add -39 to 3\sqrt{105}.
x=\frac{13-\sqrt{105}}{6}
Divide -39+3\sqrt{105} by -18.
x=\frac{-3\sqrt{105}-39}{-18}
Now solve the equation x=\frac{-39±3\sqrt{105}}{-18} when ± is minus. Subtract 3\sqrt{105} from -39.
x=\frac{\sqrt{105}+13}{6}
Divide -39-3\sqrt{105} by -18.
x=\frac{13-\sqrt{105}}{6} x=\frac{\sqrt{105}+13}{6}
The equation is now solved.
\sqrt{3\sqrt{\frac{13-\sqrt{105}}{6}+1}}=\sqrt{3\times \frac{13-\sqrt{105}}{6}-5}
Substitute \frac{13-\sqrt{105}}{6} for x in the equation \sqrt{3\sqrt{x+1}}=\sqrt{3x-5}. The expression \sqrt{3\times \frac{13-\sqrt{105}}{6}-5} is undefined because the radicand cannot be negative.
\sqrt{3\sqrt{\frac{\sqrt{105}+13}{6}+1}}=\sqrt{3\times \frac{\sqrt{105}+13}{6}-5}
Substitute \frac{\sqrt{105}+13}{6} for x in the equation \sqrt{3\sqrt{x+1}}=\sqrt{3x-5}.
\left(\frac{3}{2}+\frac{1}{2}\times 105^{\frac{1}{2}}\right)^{\frac{1}{2}}=\left(\frac{1}{2}\times 105^{\frac{1}{2}}+\frac{3}{2}\right)^{\frac{1}{2}}
Simplify. The value x=\frac{\sqrt{105}+13}{6} satisfies the equation.
x=\frac{\sqrt{105}+13}{6}
Equation \sqrt{3\sqrt{x+1}}=\sqrt{3x-5} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}