Evaluate
10\sqrt{2}\approx 14.142135624
Share
Copied to clipboard
4\times \frac{\frac{\sqrt{\frac{9+1}{3}}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 3 to get 9.
4\times \frac{\frac{\sqrt{\frac{10}{3}}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Add 9 and 1 to get 10.
4\times \frac{\frac{\frac{\sqrt{10}}{\sqrt{3}}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Rewrite the square root of the division \sqrt{\frac{10}{3}} as the division of square roots \frac{\sqrt{10}}{\sqrt{3}}.
4\times \frac{\frac{\frac{\sqrt{10}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{10}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\times \frac{\frac{\frac{\sqrt{10}\sqrt{3}}{3}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{3} is 3.
4\times \frac{\frac{\frac{\sqrt{30}}{3}}{0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{10} and \sqrt{3}, multiply the numbers under the square root.
4\times \frac{\frac{\sqrt{30}}{3\times 0.4}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Express \frac{\frac{\sqrt{30}}{3}}{0.4} as a single fraction.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\sqrt{\frac{2\times 3+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 0.4 to get 1.2.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\sqrt{\frac{6+1}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Multiply 2 and 3 to get 6.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\sqrt{\frac{7}{3}}}\sqrt{\frac{1\times 5+2}{5}}
Add 6 and 1 to get 7.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\frac{\sqrt{7}}{\sqrt{3}}}\sqrt{\frac{1\times 5+2}{5}}
Rewrite the square root of the division \sqrt{\frac{7}{3}} as the division of square roots \frac{\sqrt{7}}{\sqrt{3}}.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\frac{\sqrt{7}\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\frac{\sqrt{7}\sqrt{3}}{3}}\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{3} is 3.
4\times \frac{\frac{\sqrt{30}}{1.2}}{\frac{\sqrt{21}}{3}}\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
4\times \frac{\sqrt{30}\times 3}{1.2\sqrt{21}}\sqrt{\frac{1\times 5+2}{5}}
Divide \frac{\sqrt{30}}{1.2} by \frac{\sqrt{21}}{3} by multiplying \frac{\sqrt{30}}{1.2} by the reciprocal of \frac{\sqrt{21}}{3}.
4\times \frac{\sqrt{30}\times 3\sqrt{21}}{1.2\left(\sqrt{21}\right)^{2}}\sqrt{\frac{1\times 5+2}{5}}
Rationalize the denominator of \frac{\sqrt{30}\times 3}{1.2\sqrt{21}} by multiplying numerator and denominator by \sqrt{21}.
4\times \frac{\sqrt{30}\times 3\sqrt{21}}{1.2\times 21}\sqrt{\frac{1\times 5+2}{5}}
The square of \sqrt{21} is 21.
4\times \frac{\sqrt{630}\times 3}{1.2\times 21}\sqrt{\frac{1\times 5+2}{5}}
To multiply \sqrt{30} and \sqrt{21}, multiply the numbers under the square root.
4\times \frac{\sqrt{630}\times 3}{25.2}\sqrt{\frac{1\times 5+2}{5}}
Multiply 1.2 and 21 to get 25.2.
4\times \frac{3\sqrt{70}\times 3}{25.2}\sqrt{\frac{1\times 5+2}{5}}
Factor 630=3^{2}\times 70. Rewrite the square root of the product \sqrt{3^{2}\times 70} as the product of square roots \sqrt{3^{2}}\sqrt{70}. Take the square root of 3^{2}.
4\times \frac{9\sqrt{70}}{25.2}\sqrt{\frac{1\times 5+2}{5}}
Multiply 3 and 3 to get 9.
4\times \frac{5}{14}\sqrt{70}\sqrt{\frac{1\times 5+2}{5}}
Divide 9\sqrt{70} by 25.2 to get \frac{5}{14}\sqrt{70}.
\frac{10}{7}\sqrt{70}\sqrt{\frac{1\times 5+2}{5}}
Multiply 4 and \frac{5}{14} to get \frac{10}{7}.
\frac{10}{7}\sqrt{70}\sqrt{\frac{5+2}{5}}
Multiply 1 and 5 to get 5.
\frac{10}{7}\sqrt{70}\sqrt{\frac{7}{5}}
Add 5 and 2 to get 7.
\frac{10}{7}\sqrt{70}\times \frac{\sqrt{7}}{\sqrt{5}}
Rewrite the square root of the division \sqrt{\frac{7}{5}} as the division of square roots \frac{\sqrt{7}}{\sqrt{5}}.
\frac{10}{7}\sqrt{70}\times \frac{\sqrt{7}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{7}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{10}{7}\sqrt{70}\times \frac{\sqrt{7}\sqrt{5}}{5}
The square of \sqrt{5} is 5.
\frac{10}{7}\sqrt{70}\times \frac{\sqrt{35}}{5}
To multiply \sqrt{7} and \sqrt{5}, multiply the numbers under the square root.
\frac{10}{7}\times \frac{\sqrt{70}\sqrt{35}}{5}
Express \sqrt{70}\times \frac{\sqrt{35}}{5} as a single fraction.
\frac{10}{7}\times \frac{\sqrt{35}\sqrt{2}\sqrt{35}}{5}
Factor 70=35\times 2. Rewrite the square root of the product \sqrt{35\times 2} as the product of square roots \sqrt{35}\sqrt{2}.
\frac{10}{7}\times \frac{35\sqrt{2}}{5}
Multiply \sqrt{35} and \sqrt{35} to get 35.
\frac{10}{7}\times 7\sqrt{2}
Divide 35\sqrt{2} by 5 to get 7\sqrt{2}.
10\sqrt{2}
Multiply \frac{10}{7} and 7 to get 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}