Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
\sqrt{3}x+2\sqrt{3}=\frac{x+5}{\sqrt{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{3}x+2\sqrt{3}=\frac{\left(x+5\right)\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{x+5}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\sqrt{3}x+2\sqrt{3}=\frac{\left(x+5\right)\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\sqrt{3}x+2\sqrt{3}=\frac{x\sqrt{3}+5\sqrt{3}}{3}
Use the distributive property to multiply x+5 by \sqrt{3}.
\sqrt{3}x+2\sqrt{3}-\frac{x\sqrt{3}+5\sqrt{3}}{3}=0
Subtract \frac{x\sqrt{3}+5\sqrt{3}}{3} from both sides.
\sqrt{3}x-\frac{x\sqrt{3}+5\sqrt{3}}{3}=-2\sqrt{3}
Subtract 2\sqrt{3} from both sides. Anything subtracted from zero gives its negation.
3\sqrt{3}x-\left(x\sqrt{3}+5\sqrt{3}\right)=-6\sqrt{3}
Multiply both sides of the equation by 3.
3\sqrt{3}x-x\sqrt{3}-5\sqrt{3}=-6\sqrt{3}
To find the opposite of x\sqrt{3}+5\sqrt{3}, find the opposite of each term.
2\sqrt{3}x-5\sqrt{3}=-6\sqrt{3}
Combine 3\sqrt{3}x and -x\sqrt{3} to get 2\sqrt{3}x.
2\sqrt{3}x=-6\sqrt{3}+5\sqrt{3}
Add 5\sqrt{3} to both sides.
2\sqrt{3}x=-\sqrt{3}
Combine -6\sqrt{3} and 5\sqrt{3} to get -\sqrt{3}.
\frac{2\sqrt{3}x}{2\sqrt{3}}=-\frac{\sqrt{3}}{2\sqrt{3}}
Divide both sides by 2\sqrt{3}.
x=-\frac{\sqrt{3}}{2\sqrt{3}}
Dividing by 2\sqrt{3} undoes the multiplication by 2\sqrt{3}.
x=-\frac{1}{2}
Divide -\sqrt{3} by 2\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}