Evaluate
2^{\frac{5}{2}}-2\sqrt{3}\approx 2.192752634
Share
Copied to clipboard
\sqrt{3}-\left(3\sqrt{3}-2\sqrt{2}-\left(\sqrt{18}-\sqrt{2}\right)\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\sqrt{3}-\left(3\sqrt{3}-2\sqrt{2}-\left(3\sqrt{2}-\sqrt{2}\right)\right)
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\sqrt{3}-\left(3\sqrt{3}-2\sqrt{2}-2\sqrt{2}\right)
Combine 3\sqrt{2} and -\sqrt{2} to get 2\sqrt{2}.
\sqrt{3}-\left(3\sqrt{3}-4\sqrt{2}\right)
Combine -2\sqrt{2} and -2\sqrt{2} to get -4\sqrt{2}.
\sqrt{3}-3\sqrt{3}-\left(-4\sqrt{2}\right)
To find the opposite of 3\sqrt{3}-4\sqrt{2}, find the opposite of each term.
-2\sqrt{3}-\left(-4\sqrt{2}\right)
Combine \sqrt{3} and -3\sqrt{3} to get -2\sqrt{3}.
-2\sqrt{3}+4\sqrt{2}
The opposite of -4\sqrt{2} is 4\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}