Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\sqrt{3}\sqrt{2}-\left(\sqrt{3}\right)^{2}-\sqrt{24}-3-\sqrt{6}
Use the distributive property to multiply \sqrt{3} by \sqrt{2}-\sqrt{3}.
\sqrt{6}-\left(\sqrt{3}\right)^{2}-\sqrt{24}-3-\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\sqrt{6}-3-\sqrt{24}-3-\sqrt{6}
The square of \sqrt{3} is 3.
\sqrt{6}-3-2\sqrt{6}-3-\sqrt{6}
Factor 24=2^{2}\times 6. Rewrite the square root of the product \sqrt{2^{2}\times 6} as the product of square roots \sqrt{2^{2}}\sqrt{6}. Take the square root of 2^{2}.
-\sqrt{6}-3-3-\sqrt{6}
Combine \sqrt{6} and -2\sqrt{6} to get -\sqrt{6}.
-\sqrt{6}-6-\sqrt{6}
Subtract 3 from -3 to get -6.
-2\sqrt{6}-6
Combine -\sqrt{6} and -\sqrt{6} to get -2\sqrt{6}.