Evaluate
6-2\sqrt{2}\approx 3.171572875
Share
Copied to clipboard
\sqrt{3}\left(2\sqrt{3}-4\sqrt{\frac{1}{6}}\right)
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\sqrt{3}\left(2\sqrt{3}-4\times \frac{\sqrt{1}}{\sqrt{6}}\right)
Rewrite the square root of the division \sqrt{\frac{1}{6}} as the division of square roots \frac{\sqrt{1}}{\sqrt{6}}.
\sqrt{3}\left(2\sqrt{3}-4\times \frac{1}{\sqrt{6}}\right)
Calculate the square root of 1 and get 1.
\sqrt{3}\left(2\sqrt{3}-4\times \frac{\sqrt{6}}{\left(\sqrt{6}\right)^{2}}\right)
Rationalize the denominator of \frac{1}{\sqrt{6}} by multiplying numerator and denominator by \sqrt{6}.
\sqrt{3}\left(2\sqrt{3}-4\times \frac{\sqrt{6}}{6}\right)
The square of \sqrt{6} is 6.
\sqrt{3}\left(2\sqrt{3}+\frac{-4\sqrt{6}}{6}\right)
Express -4\times \frac{\sqrt{6}}{6} as a single fraction.
\sqrt{3}\left(\frac{6\times 2\sqrt{3}}{6}+\frac{-4\sqrt{6}}{6}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 2\sqrt{3} times \frac{6}{6}.
\sqrt{3}\times \frac{6\times 2\sqrt{3}-4\sqrt{6}}{6}
Since \frac{6\times 2\sqrt{3}}{6} and \frac{-4\sqrt{6}}{6} have the same denominator, add them by adding their numerators.
\sqrt{3}\times \frac{12\sqrt{3}-4\sqrt{6}}{6}
Do the multiplications in 6\times 2\sqrt{3}-4\sqrt{6}.
\frac{\sqrt{3}\left(12\sqrt{3}-4\sqrt{6}\right)}{6}
Express \sqrt{3}\times \frac{12\sqrt{3}-4\sqrt{6}}{6} as a single fraction.
\frac{12\left(\sqrt{3}\right)^{2}-4\sqrt{3}\sqrt{6}}{6}
Use the distributive property to multiply \sqrt{3} by 12\sqrt{3}-4\sqrt{6}.
\frac{12\times 3-4\sqrt{3}\sqrt{6}}{6}
The square of \sqrt{3} is 3.
\frac{36-4\sqrt{3}\sqrt{6}}{6}
Multiply 12 and 3 to get 36.
\frac{36-4\sqrt{3}\sqrt{3}\sqrt{2}}{6}
Factor 6=3\times 2. Rewrite the square root of the product \sqrt{3\times 2} as the product of square roots \sqrt{3}\sqrt{2}.
\frac{36-4\times 3\sqrt{2}}{6}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{36-12\sqrt{2}}{6}
Multiply -4 and 3 to get -12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}