Evaluate
3\left(\sqrt{6}-2\right)\approx 1.348469228
Share
Copied to clipboard
\frac{\sqrt{3}}{\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}+\frac{1}{\sqrt{2}}}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}+\frac{1}{\sqrt{2}}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}}
Rationalize the denominator of \frac{1}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{2}}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}}{\frac{2\sqrt{3}}{6}+\frac{3\sqrt{2}}{6}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3 and 2 is 6. Multiply \frac{\sqrt{3}}{3} times \frac{2}{2}. Multiply \frac{\sqrt{2}}{2} times \frac{3}{3}.
\frac{\sqrt{3}}{\frac{2\sqrt{3}+3\sqrt{2}}{6}}
Since \frac{2\sqrt{3}}{6} and \frac{3\sqrt{2}}{6} have the same denominator, add them by adding their numerators.
\frac{\sqrt{3}\times 6}{2\sqrt{3}+3\sqrt{2}}
Divide \sqrt{3} by \frac{2\sqrt{3}+3\sqrt{2}}{6} by multiplying \sqrt{3} by the reciprocal of \frac{2\sqrt{3}+3\sqrt{2}}{6}.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{\left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right)}
Rationalize the denominator of \frac{\sqrt{3}\times 6}{2\sqrt{3}+3\sqrt{2}} by multiplying numerator and denominator by 2\sqrt{3}-3\sqrt{2}.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{\left(2\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(2\sqrt{3}+3\sqrt{2}\right)\left(2\sqrt{3}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{2^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{4\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Calculate 2 to the power of 2 and get 4.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{4\times 3-\left(3\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{12-\left(3\sqrt{2}\right)^{2}}
Multiply 4 and 3 to get 12.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{12-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{12-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{12-9\times 2}
The square of \sqrt{2} is 2.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{12-18}
Multiply 9 and 2 to get 18.
\frac{\sqrt{3}\times 6\left(2\sqrt{3}-3\sqrt{2}\right)}{-6}
Subtract 18 from 12 to get -6.
\sqrt{3}\left(-1\right)\left(2\sqrt{3}-3\sqrt{2}\right)
Cancel out -6 and -6.
-2\left(\sqrt{3}\right)^{2}+3\sqrt{3}\sqrt{2}
Use the distributive property to multiply \sqrt{3}\left(-1\right) by 2\sqrt{3}-3\sqrt{2}.
-2\times 3+3\sqrt{3}\sqrt{2}
The square of \sqrt{3} is 3.
-6+3\sqrt{3}\sqrt{2}
Multiply -2 and 3 to get -6.
-6+3\sqrt{6}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}