Solve for x
x=100
Graph
Share
Copied to clipboard
\sqrt{2x-4}=4+\sqrt{x}
Subtract -\sqrt{x} from both sides of the equation.
\left(\sqrt{2x-4}\right)^{2}=\left(4+\sqrt{x}\right)^{2}
Square both sides of the equation.
2x-4=\left(4+\sqrt{x}\right)^{2}
Calculate \sqrt{2x-4} to the power of 2 and get 2x-4.
2x-4=16+8\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4+\sqrt{x}\right)^{2}.
2x-4=16+8\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
2x-4-\left(16+x\right)=8\sqrt{x}
Subtract 16+x from both sides of the equation.
2x-4-16-x=8\sqrt{x}
To find the opposite of 16+x, find the opposite of each term.
2x-20-x=8\sqrt{x}
Subtract 16 from -4 to get -20.
x-20=8\sqrt{x}
Combine 2x and -x to get x.
\left(x-20\right)^{2}=\left(8\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-40x+400=\left(8\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-20\right)^{2}.
x^{2}-40x+400=8^{2}\left(\sqrt{x}\right)^{2}
Expand \left(8\sqrt{x}\right)^{2}.
x^{2}-40x+400=64\left(\sqrt{x}\right)^{2}
Calculate 8 to the power of 2 and get 64.
x^{2}-40x+400=64x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-40x+400-64x=0
Subtract 64x from both sides.
x^{2}-104x+400=0
Combine -40x and -64x to get -104x.
a+b=-104 ab=400
To solve the equation, factor x^{2}-104x+400 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-400 -2,-200 -4,-100 -5,-80 -8,-50 -10,-40 -16,-25 -20,-20
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 400.
-1-400=-401 -2-200=-202 -4-100=-104 -5-80=-85 -8-50=-58 -10-40=-50 -16-25=-41 -20-20=-40
Calculate the sum for each pair.
a=-100 b=-4
The solution is the pair that gives sum -104.
\left(x-100\right)\left(x-4\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=100 x=4
To find equation solutions, solve x-100=0 and x-4=0.
\sqrt{2\times 100-4}-\sqrt{100}=4
Substitute 100 for x in the equation \sqrt{2x-4}-\sqrt{x}=4.
4=4
Simplify. The value x=100 satisfies the equation.
\sqrt{2\times 4-4}-\sqrt{4}=4
Substitute 4 for x in the equation \sqrt{2x-4}-\sqrt{x}=4.
0=4
Simplify. The value x=4 does not satisfy the equation.
\sqrt{2\times 100-4}-\sqrt{100}=4
Substitute 100 for x in the equation \sqrt{2x-4}-\sqrt{x}=4.
4=4
Simplify. The value x=100 satisfies the equation.
x=100
Equation \sqrt{2x-4}=\sqrt{x}+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}