Solve for x (complex solution)
x=-1+\sqrt{6}i\approx -1+2.449489743i
Graph
Share
Copied to clipboard
\left(\sqrt{2x-3}\right)^{2}=\left(x+2\right)^{2}
Square both sides of the equation.
2x-3=\left(x+2\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
2x-3-x^{2}=4x+4
Subtract x^{2} from both sides.
2x-3-x^{2}-4x=4
Subtract 4x from both sides.
-2x-3-x^{2}=4
Combine 2x and -4x to get -2x.
-2x-3-x^{2}-4=0
Subtract 4 from both sides.
-2x-7-x^{2}=0
Subtract 4 from -3 to get -7.
-x^{2}-2x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -2 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-1\right)\left(-7\right)}}{2\left(-1\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+4\left(-7\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-2\right)±\sqrt{4-28}}{2\left(-1\right)}
Multiply 4 times -7.
x=\frac{-\left(-2\right)±\sqrt{-24}}{2\left(-1\right)}
Add 4 to -28.
x=\frac{-\left(-2\right)±2\sqrt{6}i}{2\left(-1\right)}
Take the square root of -24.
x=\frac{2±2\sqrt{6}i}{2\left(-1\right)}
The opposite of -2 is 2.
x=\frac{2±2\sqrt{6}i}{-2}
Multiply 2 times -1.
x=\frac{2+2\sqrt{6}i}{-2}
Now solve the equation x=\frac{2±2\sqrt{6}i}{-2} when ± is plus. Add 2 to 2i\sqrt{6}.
x=-\sqrt{6}i-1
Divide 2+2i\sqrt{6} by -2.
x=\frac{-2\sqrt{6}i+2}{-2}
Now solve the equation x=\frac{2±2\sqrt{6}i}{-2} when ± is minus. Subtract 2i\sqrt{6} from 2.
x=-1+\sqrt{6}i
Divide 2-2i\sqrt{6} by -2.
x=-\sqrt{6}i-1 x=-1+\sqrt{6}i
The equation is now solved.
\sqrt{2\left(-\sqrt{6}i-1\right)-3}=-\sqrt{6}i-1+2
Substitute -\sqrt{6}i-1 for x in the equation \sqrt{2x-3}=x+2.
-\left(1-i\times 6^{\frac{1}{2}}\right)=-i\times 6^{\frac{1}{2}}+1
Simplify. The value x=-\sqrt{6}i-1 does not satisfy the equation.
\sqrt{2\left(-1+\sqrt{6}i\right)-3}=-1+\sqrt{6}i+2
Substitute -1+\sqrt{6}i for x in the equation \sqrt{2x-3}=x+2.
1+i\times 6^{\frac{1}{2}}=1+i\times 6^{\frac{1}{2}}
Simplify. The value x=-1+\sqrt{6}i satisfies the equation.
x=-1+\sqrt{6}i
Equation \sqrt{2x-3}=x+2 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}