Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x-3}=4-\sqrt{4x+1}
Subtract \sqrt{4x+1} from both sides of the equation.
\left(\sqrt{2x-3}\right)^{2}=\left(4-\sqrt{4x+1}\right)^{2}
Square both sides of the equation.
2x-3=\left(4-\sqrt{4x+1}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=16-8\sqrt{4x+1}+\left(\sqrt{4x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-\sqrt{4x+1}\right)^{2}.
2x-3=16-8\sqrt{4x+1}+4x+1
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
2x-3=17-8\sqrt{4x+1}+4x
Add 16 and 1 to get 17.
2x-3-\left(17+4x\right)=-8\sqrt{4x+1}
Subtract 17+4x from both sides of the equation.
2x-3-17-4x=-8\sqrt{4x+1}
To find the opposite of 17+4x, find the opposite of each term.
2x-20-4x=-8\sqrt{4x+1}
Subtract 17 from -3 to get -20.
-2x-20=-8\sqrt{4x+1}
Combine 2x and -4x to get -2x.
\left(-2x-20\right)^{2}=\left(-8\sqrt{4x+1}\right)^{2}
Square both sides of the equation.
4x^{2}+80x+400=\left(-8\sqrt{4x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2x-20\right)^{2}.
4x^{2}+80x+400=\left(-8\right)^{2}\left(\sqrt{4x+1}\right)^{2}
Expand \left(-8\sqrt{4x+1}\right)^{2}.
4x^{2}+80x+400=64\left(\sqrt{4x+1}\right)^{2}
Calculate -8 to the power of 2 and get 64.
4x^{2}+80x+400=64\left(4x+1\right)
Calculate \sqrt{4x+1} to the power of 2 and get 4x+1.
4x^{2}+80x+400=256x+64
Use the distributive property to multiply 64 by 4x+1.
4x^{2}+80x+400-256x=64
Subtract 256x from both sides.
4x^{2}-176x+400=64
Combine 80x and -256x to get -176x.
4x^{2}-176x+400-64=0
Subtract 64 from both sides.
4x^{2}-176x+336=0
Subtract 64 from 400 to get 336.
x=\frac{-\left(-176\right)±\sqrt{\left(-176\right)^{2}-4\times 4\times 336}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 4 for a, -176 for b, and 336 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-176\right)±\sqrt{30976-4\times 4\times 336}}{2\times 4}
Square -176.
x=\frac{-\left(-176\right)±\sqrt{30976-16\times 336}}{2\times 4}
Multiply -4 times 4.
x=\frac{-\left(-176\right)±\sqrt{30976-5376}}{2\times 4}
Multiply -16 times 336.
x=\frac{-\left(-176\right)±\sqrt{25600}}{2\times 4}
Add 30976 to -5376.
x=\frac{-\left(-176\right)±160}{2\times 4}
Take the square root of 25600.
x=\frac{176±160}{2\times 4}
The opposite of -176 is 176.
x=\frac{176±160}{8}
Multiply 2 times 4.
x=\frac{336}{8}
Now solve the equation x=\frac{176±160}{8} when ± is plus. Add 176 to 160.
x=42
Divide 336 by 8.
x=\frac{16}{8}
Now solve the equation x=\frac{176±160}{8} when ± is minus. Subtract 160 from 176.
x=2
Divide 16 by 8.
x=42 x=2
The equation is now solved.
\sqrt{2\times 42-3}+\sqrt{4\times 42+1}=4
Substitute 42 for x in the equation \sqrt{2x-3}+\sqrt{4x+1}=4.
22=4
Simplify. The value x=42 does not satisfy the equation.
\sqrt{2\times 2-3}+\sqrt{4\times 2+1}=4
Substitute 2 for x in the equation \sqrt{2x-3}+\sqrt{4x+1}=4.
4=4
Simplify. The value x=2 satisfies the equation.
x=2
Equation \sqrt{2x-3}=-\sqrt{4x+1}+4 has a unique solution.