Solve for x
x=14
x=6
Graph
Share
Copied to clipboard
\left(\sqrt{2x-3}\right)^{2}=\left(2+\sqrt{x-5}\right)^{2}
Square both sides of the equation.
2x-3=\left(2+\sqrt{x-5}\right)^{2}
Calculate \sqrt{2x-3} to the power of 2 and get 2x-3.
2x-3=4+4\sqrt{x-5}+\left(\sqrt{x-5}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2+\sqrt{x-5}\right)^{2}.
2x-3=4+4\sqrt{x-5}+x-5
Calculate \sqrt{x-5} to the power of 2 and get x-5.
2x-3=-1+4\sqrt{x-5}+x
Subtract 5 from 4 to get -1.
2x-3-\left(-1+x\right)=4\sqrt{x-5}
Subtract -1+x from both sides of the equation.
2x-3+1-x=4\sqrt{x-5}
To find the opposite of -1+x, find the opposite of each term.
2x-2-x=4\sqrt{x-5}
Add -3 and 1 to get -2.
x-2=4\sqrt{x-5}
Combine 2x and -x to get x.
\left(x-2\right)^{2}=\left(4\sqrt{x-5}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(4\sqrt{x-5}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=4^{2}\left(\sqrt{x-5}\right)^{2}
Expand \left(4\sqrt{x-5}\right)^{2}.
x^{2}-4x+4=16\left(\sqrt{x-5}\right)^{2}
Calculate 4 to the power of 2 and get 16.
x^{2}-4x+4=16\left(x-5\right)
Calculate \sqrt{x-5} to the power of 2 and get x-5.
x^{2}-4x+4=16x-80
Use the distributive property to multiply 16 by x-5.
x^{2}-4x+4-16x=-80
Subtract 16x from both sides.
x^{2}-20x+4=-80
Combine -4x and -16x to get -20x.
x^{2}-20x+4+80=0
Add 80 to both sides.
x^{2}-20x+84=0
Add 4 and 80 to get 84.
a+b=-20 ab=84
To solve the equation, factor x^{2}-20x+84 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
-1,-84 -2,-42 -3,-28 -4,-21 -6,-14 -7,-12
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 84.
-1-84=-85 -2-42=-44 -3-28=-31 -4-21=-25 -6-14=-20 -7-12=-19
Calculate the sum for each pair.
a=-14 b=-6
The solution is the pair that gives sum -20.
\left(x-14\right)\left(x-6\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=14 x=6
To find equation solutions, solve x-14=0 and x-6=0.
\sqrt{2\times 14-3}=2+\sqrt{14-5}
Substitute 14 for x in the equation \sqrt{2x-3}=2+\sqrt{x-5}.
5=5
Simplify. The value x=14 satisfies the equation.
\sqrt{2\times 6-3}=2+\sqrt{6-5}
Substitute 6 for x in the equation \sqrt{2x-3}=2+\sqrt{x-5}.
3=3
Simplify. The value x=6 satisfies the equation.
x=14 x=6
List all solutions of \sqrt{2x-3}=\sqrt{x-5}+2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}