Solve for x
x=2\left(\sqrt{3}+2\right)\approx 7.464101615
Graph
Share
Copied to clipboard
\left(\sqrt{2x-1}\right)^{2}=\left(1+\sqrt{x}\right)^{2}
Square both sides of the equation.
2x-1=\left(1+\sqrt{x}\right)^{2}
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
2x-1=1+2\sqrt{x}+\left(\sqrt{x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+\sqrt{x}\right)^{2}.
2x-1=1+2\sqrt{x}+x
Calculate \sqrt{x} to the power of 2 and get x.
2x-1-\left(1+x\right)=2\sqrt{x}
Subtract 1+x from both sides of the equation.
2x-1-1-x=2\sqrt{x}
To find the opposite of 1+x, find the opposite of each term.
2x-2-x=2\sqrt{x}
Subtract 1 from -1 to get -2.
x-2=2\sqrt{x}
Combine 2x and -x to get x.
\left(x-2\right)^{2}=\left(2\sqrt{x}\right)^{2}
Square both sides of the equation.
x^{2}-4x+4=\left(2\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-2\right)^{2}.
x^{2}-4x+4=2^{2}\left(\sqrt{x}\right)^{2}
Expand \left(2\sqrt{x}\right)^{2}.
x^{2}-4x+4=4\left(\sqrt{x}\right)^{2}
Calculate 2 to the power of 2 and get 4.
x^{2}-4x+4=4x
Calculate \sqrt{x} to the power of 2 and get x.
x^{2}-4x+4-4x=0
Subtract 4x from both sides.
x^{2}-8x+4=0
Combine -4x and -4x to get -8x.
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 4}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -8 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-8\right)±\sqrt{64-4\times 4}}{2}
Square -8.
x=\frac{-\left(-8\right)±\sqrt{64-16}}{2}
Multiply -4 times 4.
x=\frac{-\left(-8\right)±\sqrt{48}}{2}
Add 64 to -16.
x=\frac{-\left(-8\right)±4\sqrt{3}}{2}
Take the square root of 48.
x=\frac{8±4\sqrt{3}}{2}
The opposite of -8 is 8.
x=\frac{4\sqrt{3}+8}{2}
Now solve the equation x=\frac{8±4\sqrt{3}}{2} when ± is plus. Add 8 to 4\sqrt{3}.
x=2\sqrt{3}+4
Divide 8+4\sqrt{3} by 2.
x=\frac{8-4\sqrt{3}}{2}
Now solve the equation x=\frac{8±4\sqrt{3}}{2} when ± is minus. Subtract 4\sqrt{3} from 8.
x=4-2\sqrt{3}
Divide 8-4\sqrt{3} by 2.
x=2\sqrt{3}+4 x=4-2\sqrt{3}
The equation is now solved.
\sqrt{2\left(2\sqrt{3}+4\right)-1}=1+\sqrt{2\sqrt{3}+4}
Substitute 2\sqrt{3}+4 for x in the equation \sqrt{2x-1}=1+\sqrt{x}.
2+3^{\frac{1}{2}}=2+3^{\frac{1}{2}}
Simplify. The value x=2\sqrt{3}+4 satisfies the equation.
\sqrt{2\left(4-2\sqrt{3}\right)-1}=1+\sqrt{4-2\sqrt{3}}
Substitute 4-2\sqrt{3} for x in the equation \sqrt{2x-1}=1+\sqrt{x}.
2-3^{\frac{1}{2}}=3^{\frac{1}{2}}
Simplify. The value x=4-2\sqrt{3} does not satisfy the equation.
\sqrt{2\left(2\sqrt{3}+4\right)-1}=1+\sqrt{2\sqrt{3}+4}
Substitute 2\sqrt{3}+4 for x in the equation \sqrt{2x-1}=1+\sqrt{x}.
2+3^{\frac{1}{2}}=2+3^{\frac{1}{2}}
Simplify. The value x=2\sqrt{3}+4 satisfies the equation.
x=2\sqrt{3}+4
Equation \sqrt{2x-1}=\sqrt{x}+1 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}