Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\sqrt{2x-1}=7-\sqrt{3x+1}
Subtract \sqrt{3x+1} from both sides of the equation.
\left(\sqrt{2x-1}\right)^{2}=\left(7-\sqrt{3x+1}\right)^{2}
Square both sides of the equation.
2x-1=\left(7-\sqrt{3x+1}\right)^{2}
Calculate \sqrt{2x-1} to the power of 2 and get 2x-1.
2x-1=49-14\sqrt{3x+1}+\left(\sqrt{3x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(7-\sqrt{3x+1}\right)^{2}.
2x-1=49-14\sqrt{3x+1}+3x+1
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
2x-1=50-14\sqrt{3x+1}+3x
Add 49 and 1 to get 50.
2x-1-\left(50+3x\right)=-14\sqrt{3x+1}
Subtract 50+3x from both sides of the equation.
2x-1-50-3x=-14\sqrt{3x+1}
To find the opposite of 50+3x, find the opposite of each term.
2x-51-3x=-14\sqrt{3x+1}
Subtract 50 from -1 to get -51.
-x-51=-14\sqrt{3x+1}
Combine 2x and -3x to get -x.
\left(-x-51\right)^{2}=\left(-14\sqrt{3x+1}\right)^{2}
Square both sides of the equation.
x^{2}+102x+2601=\left(-14\sqrt{3x+1}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-x-51\right)^{2}.
x^{2}+102x+2601=\left(-14\right)^{2}\left(\sqrt{3x+1}\right)^{2}
Expand \left(-14\sqrt{3x+1}\right)^{2}.
x^{2}+102x+2601=196\left(\sqrt{3x+1}\right)^{2}
Calculate -14 to the power of 2 and get 196.
x^{2}+102x+2601=196\left(3x+1\right)
Calculate \sqrt{3x+1} to the power of 2 and get 3x+1.
x^{2}+102x+2601=588x+196
Use the distributive property to multiply 196 by 3x+1.
x^{2}+102x+2601-588x=196
Subtract 588x from both sides.
x^{2}-486x+2601=196
Combine 102x and -588x to get -486x.
x^{2}-486x+2601-196=0
Subtract 196 from both sides.
x^{2}-486x+2405=0
Subtract 196 from 2601 to get 2405.
x=\frac{-\left(-486\right)±\sqrt{\left(-486\right)^{2}-4\times 2405}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -486 for b, and 2405 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-486\right)±\sqrt{236196-4\times 2405}}{2}
Square -486.
x=\frac{-\left(-486\right)±\sqrt{236196-9620}}{2}
Multiply -4 times 2405.
x=\frac{-\left(-486\right)±\sqrt{226576}}{2}
Add 236196 to -9620.
x=\frac{-\left(-486\right)±476}{2}
Take the square root of 226576.
x=\frac{486±476}{2}
The opposite of -486 is 486.
x=\frac{962}{2}
Now solve the equation x=\frac{486±476}{2} when ± is plus. Add 486 to 476.
x=481
Divide 962 by 2.
x=\frac{10}{2}
Now solve the equation x=\frac{486±476}{2} when ± is minus. Subtract 476 from 486.
x=5
Divide 10 by 2.
x=481 x=5
The equation is now solved.
\sqrt{2\times 481-1}+\sqrt{3\times 481+1}=7
Substitute 481 for x in the equation \sqrt{2x-1}+\sqrt{3x+1}=7.
69=7
Simplify. The value x=481 does not satisfy the equation.
\sqrt{2\times 5-1}+\sqrt{3\times 5+1}=7
Substitute 5 for x in the equation \sqrt{2x-1}+\sqrt{3x+1}=7.
7=7
Simplify. The value x=5 satisfies the equation.
x=5
Equation \sqrt{2x-1}=-\sqrt{3x+1}+7 has a unique solution.