Solve for x
x=2-\sqrt{6}\approx -0.449489743
Graph
Share
Copied to clipboard
\left(\sqrt{2x+3}\right)^{2}=\left(1-x\right)^{2}
Square both sides of the equation.
2x+3=\left(1-x\right)^{2}
Calculate \sqrt{2x+3} to the power of 2 and get 2x+3.
2x+3=1-2x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(1-x\right)^{2}.
2x+3-1=-2x+x^{2}
Subtract 1 from both sides.
2x+2=-2x+x^{2}
Subtract 1 from 3 to get 2.
2x+2+2x=x^{2}
Add 2x to both sides.
4x+2=x^{2}
Combine 2x and 2x to get 4x.
4x+2-x^{2}=0
Subtract x^{2} from both sides.
-x^{2}+4x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\times 2}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 4 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-1\right)\times 2}}{2\left(-1\right)}
Square 4.
x=\frac{-4±\sqrt{16+4\times 2}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-4±\sqrt{16+8}}{2\left(-1\right)}
Multiply 4 times 2.
x=\frac{-4±\sqrt{24}}{2\left(-1\right)}
Add 16 to 8.
x=\frac{-4±2\sqrt{6}}{2\left(-1\right)}
Take the square root of 24.
x=\frac{-4±2\sqrt{6}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{6}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{6}}{-2} when ± is plus. Add -4 to 2\sqrt{6}.
x=2-\sqrt{6}
Divide -4+2\sqrt{6} by -2.
x=\frac{-2\sqrt{6}-4}{-2}
Now solve the equation x=\frac{-4±2\sqrt{6}}{-2} when ± is minus. Subtract 2\sqrt{6} from -4.
x=\sqrt{6}+2
Divide -4-2\sqrt{6} by -2.
x=2-\sqrt{6} x=\sqrt{6}+2
The equation is now solved.
\sqrt{2\left(2-\sqrt{6}\right)+3}=1-\left(2-\sqrt{6}\right)
Substitute 2-\sqrt{6} for x in the equation \sqrt{2x+3}=1-x.
6^{\frac{1}{2}}-1=-1+6^{\frac{1}{2}}
Simplify. The value x=2-\sqrt{6} satisfies the equation.
\sqrt{2\left(\sqrt{6}+2\right)+3}=1-\left(\sqrt{6}+2\right)
Substitute \sqrt{6}+2 for x in the equation \sqrt{2x+3}=1-x.
6^{\frac{1}{2}}+1=-1-6^{\frac{1}{2}}
Simplify. The value x=\sqrt{6}+2 does not satisfy the equation because the left and the right hand side have opposite signs.
x=2-\sqrt{6}
Equation \sqrt{2x+3}=1-x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}