Solve for x
x=0
Graph
Share
Copied to clipboard
\left(\sqrt{2x+16}\right)^{2}=\left(2x+4\right)^{2}
Square both sides of the equation.
2x+16=\left(2x+4\right)^{2}
Calculate \sqrt{2x+16} to the power of 2 and get 2x+16.
2x+16=4x^{2}+16x+16
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2x+4\right)^{2}.
2x+16-4x^{2}=16x+16
Subtract 4x^{2} from both sides.
2x+16-4x^{2}-16x=16
Subtract 16x from both sides.
-14x+16-4x^{2}=16
Combine 2x and -16x to get -14x.
-14x+16-4x^{2}-16=0
Subtract 16 from both sides.
-14x-4x^{2}=0
Subtract 16 from 16 to get 0.
x\left(-14-4x\right)=0
Factor out x.
x=0 x=-\frac{7}{2}
To find equation solutions, solve x=0 and -14-4x=0.
\sqrt{2\times 0+16}=2\times 0+4
Substitute 0 for x in the equation \sqrt{2x+16}=2x+4.
4=4
Simplify. The value x=0 satisfies the equation.
\sqrt{2\left(-\frac{7}{2}\right)+16}=2\left(-\frac{7}{2}\right)+4
Substitute -\frac{7}{2} for x in the equation \sqrt{2x+16}=2x+4.
3=-3
Simplify. The value x=-\frac{7}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
x=0
Equation \sqrt{2x+16}=2x+4 has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}